Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Thermodynamics of the binding of Substance P to lipid membranes

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2017, v.30 no.2, pp.89-95
https://doi.org/10.5806/AST.2017.30.2.89


  • Downloaded
  • Viewed

Abstract

The thermodynamic functions for the binding of the peptide Substance P (SP) on the surface of lipid vesicles made of various types of lipids were obtained by using isothermal titration calorimetry. The reaction enthalpies measured from the experiments were -0.11 to -4.5 kcal mol−1. The sizes of the lipid vesicles were measured with dynamic light scattering instrument in order to get the correlation between the reaction enthalpies and the vesicle sizes. The bindings of SP on the lipid vesicles with diameter of 37 to 108 nm were classified into the enthalpy-driven reaction or the entropy-driven reaction according to the size of the lipid vesicles. For the enthalpy-driven binding reaction, the significance of the electrostatic interactions between SP and lipid molecules was affirmed from the experimental results of the DMPC/DMPG/DMPH and DMPC/DMPS/DMPH vesicles as well as the importance of the hydrophobic interactions between hydrophobic groups of SP and lipid molecules.

keywords
thermodynamics, partitioning, Substance P, lipid vesicle


Reference

1

1. J. Seelig and P. Ganz, Biochemistry, 30(38), 9354-9(1991).

2

2. A. Seelig and P. M. Macdonald, Biochemistry, 28(6), 2490-6 (1989).

3

3. T. L. Whitehead, L. M. Jones, and R. P. Hicks, Journal of Biomolecular Structure and Dynamics, 21(4), 567-576 (2004).

4

4. P. Ram and J. H. Prestegard, BBA - Biomembranes, 940(2), 289-294 (1988).

5

5. T. L. Whitehead, L. M. Jones, and R. P. Hicks, Biopolymers, 58(7), 593-605 (2001).

6

6. G. Beschiaschvili and J. Seelig, Biochemistry, 31(41), 10044-10053 (1992).

7

7. T. C. Wong and X. Gao, Biopolymers, 45(5), 395-403(1998).

8

8. D. A. Keire and T. G. Fletcher, Biophysical J., 70(4), 1716-1727 (1996).

9

9. S. Augé, B. Bersch, M. Tropis, and A. Milon, Biopolymers, 54(5), 297-306 (2000).

10

10. T. Wieprecht, M. Beyermann, and J. Seelig, Biophys Chem, 96(2-3), 191-201 (2002).

11

11. C. Kim, S. B. Baek, D. H. Kim, S. C. Lim, H. J. Lee, and H. C. Lee, J. Peptide Sci., 15(5), 353-358 (2009).

12

12. B. Barz, T. C. Wong, and I. Kosztin, Biochim Biophys Acta, 1778(4), 945-53 (2008).

13

13. S. Harrison and P. Geppetti, Int. J. Biochem Cell. Biol., 33(6), 555-76 (2001).

14

14. T. Hokfelt, B. Pernow, and J. Wahren, J Intern Med, 249(1), 27-40 (2001).

15

15. H. Duplaa, O. Convert, A. M. Sautereau, J. F. Tocanne, and G. Chassaing, Biochimica et Biophysica Acta -Biomembranes, 1107(1), 12-22 (1992).

16

16. A. Seelig, T. Alt, S. Lotz, and G. Holzemann, Biochemistry, 35(14), 4365-74 (1996).

17

17. I. Jelesarov and H. R. Bosshard, J. Mol. Recognit, 12(1), 3-18 (1999).

18

18. N. Voievoda, T. Schulthess, B. Bechinger, and J. Seelig, J Phys Chem B, 119(30), 9678-87 (2015).

19

19. M. N. Triba, D. E. Warschawski, and P. F. Devaux, Biophys J, 88(3), 1887-901 (2005).

20

20. J. Seelig, Biochim Biophys Acta, 1666(1-2), 40-50 (2004).

21

21. T. Broemstrup and N. Reuter, Biophysical J., 99, 825-833 (2010).

22

22. T. Wymore and T. C. Wong, Biophysical J., 76, 1213-1227 (1999).

23

23. M. Meier and J. Seelig, J. Mol. Biol., 369(1), 277-89(2007).

상단으로 이동

Analytical Science and Technology