ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

논문 상세

    솔잎가지 표면에 침착된 입자상 물질의 물리화학적 특성 및 대기오염 지표로서의 가능성 고찰

    Physicochemical properties of deposited particles on surface of pine leaves as biomarker for air pollution

    분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2018, v.31 no.6, pp.247-258
    https://doi.org/10.5806/AST.2018.31.6.247
    정다위 (국립환경과학원)
    최정희 (국립환경과학원)
    이장호 (국립환경과학원)
    이수용 (국립환경과학원)
    이하은 (국립환경과학원)
    박기완 (국립환경과학원)
    심규영 (국립환경과학원)
    이종천 (국립환경과학원)
    • 다운로드 수
    • 조회수

    초록

    본 연구는 대기오염 영향에 따라 주변의 오염도를 식물로 평가할 수 있는 여부를 고찰하기 위한 연구이다. 국내 자생하는 소나무의 1년생 솔잎가지를 대상 평가지표로 선택하였으며, 채취지점은 공단지역 주변의 공원 2곳, 상대적으로 오염원이 적다고 예상되는 도시지역 공원 2곳을 선정하였다. 대상 채취지점에서 소나무 10 그루 이상에서 지상 2 m 이상의 솔잎가지를 채취하였다. 채취한 솔잎가지 표면에 침착된 입자상 물질에 대한 분석항목은 입도분포, 전자현미경의 표면촬영, 먼지제거율, 납 등 중금속, 다환방향족탄화수소류(PAHs) 유기물질이었다. 초음파를 이용하여 탈착시킨 침착된 입자상 물질의 입도는 0.4 μm~200 μm 범위로 나타났고, 10 μm 이하의 입도는 20% 수준이었다. 솔잎가지에 침착된 입자상 물질의 양은 평균 0.636 mg (0.450 mg~0.825 mg) 이었고, 강수장치에 의한 제거율은 평균 18.8 % (10.0% ~27.6%)로 나타났다. 고주파전처리장치로 산전처리한 후 ICP/MS로 측정한 입자상 물질의 중금속 농도는 As 18.8~26.3 mg/kg, Be 0.08~0.13 mg/kg, Cd 0.06~0.08 mg/kg, Cr 4.91~17.8 mg/kg, Cu 5.26~405 mg/ kg, Fe 1,930~2,670 mg/kg, Pb 3.03~28.1 mg/kg, Mn 26.9~42.8 mg/kg, Ni 2.66~10.4 mg/kg, Al 4,560~8,730 mg/kg, Ba 2,500~6,120 mg/kg, Rb 5.27~17.8 mg/kg, Sr 40.9~95.3 mg/kg, Zn 4,030~8,260 mg/kg 범위이었다. 침착된 입자상 물질의 세척액을 액-액 추출·정제한 후 GC/MS/MS로 분석한 PAHs의 농도는 ΣPAH16 은 1.179~12.396 mg/kg, ΣPAH7은 0.147~0.741 mg/kg 범위이었다.

    keywords
    dust, pine, needles, shoot, sheath, particle size, weight of deposited particles, ICP/MS, GC/MS/ MS, trace elements (As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Al, Ba, Rb, Sr, Zn), PAHs

    Abstract

    The purpose of the present study was to investigate whether the degree of air pollution can be evaluated via examination of local plants. Selected sites included two parks in an industrial area, as well as two parks in an urban area. Selected plant samples comprised one-year-old pine shoot leaves. Leaves growing over 2 m from the ground were collected from over 10 pine trees. Leaf surface was analyzed for deposition of 14 trace elements and 16 polycyclic aromatic hydrocarbons (PAHs), including particle size and mass, surface imaging, precipitation-mediated particle removal rate, and concentration. Particle size ranged from 0.4 to 200 μm, and the volume percentage of particles ≤10 was 20 %. Deposited particle mass ranged from 0.450-0.825 mg, and precipitation-mediated removal rate ranged from 10.0-27.6 %. Trace element concentration, as measured by ICP/MS after microwave acid digestion, was 18.8-26.3 mg/kg As, 0.08-0.13 mg/kg Be, 0.06-0.08 mg/kg Cd, 4.91-17.8 mg/kg Cr, 5.26-405 mg/kg Cu, 1,930-2,670 mg/kg Fe, 3.03-28.1 mg/kg Pb, 26.9-42.8 mg/kg Mn, 2.66-10.4 mg/kg Ni, 4,560-8,730 mg/kg Al, 2,500-6,120 mg/kg Ba, 5.27-17.8 mg/kg Rb, 40.9-95.3 mg/ kg Sr, and 4,030-8,260 mg/kg Zn. Concentration of PAHs, as analyzed by GC/MS/MS after liquid-liquid extraction and purification of deposited particles, ranged from 1.17 to 12.378 mg/kg for ΣPAH16 and from 1.17 to 12.378 mg/kg for ΣPAH7.

    keywords
    dust, pine, needles, shoot, sheath, particle size, weight of deposited particles, ICP/MS, GC/MS/MS, trace elements (As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Al, Ba, Rb, Sr, Zn), PAHs


    참고문헌

    1

    1. H. Rudel, J. Muller, H. Jurling, M. Bartel-Steinbach, and Jan Koschorreck, Environ. Sci. Pollut. Res., 18, 1457-1470 (2011).

    2

    2. NORMAN, Norman Bulletin, 3, 1-20 (2012).

    3

    3. A. Fliedner, H. Rudel, H. Jurling, J. Muller, F. Neugebauer, and C. Schroter-Kermani, Environ. Sci. Eur., 24(7), 1-15 (2012).

    4

    4. J. Koschorreck, C. Heiss, J. Wellmitz, A. Fliedner, and H. Rudel, Environ. Sci. Pollut. Res., 22, 1597-1611(2015).

    5

    5. NLIC, Environmental Health Act, Basic Investigations, etc. of National Environmental Health(Article 14) and Epidemiological Investigations, etc. on Environment-Related Harm to Health (Article 15), 2016.

    6

    6. NLIC, Environmental Health Act, Formulation Environmental Health Master Plans (Article 6), 2016.

    7

    7. NIER, Application of SOPs in National Environmental Specimen Bank I, 2010.

    8

    8. NIER, Application of SOPs in National Environmental Specimen Bank II, 2011.

    9

    9. NIER, Application of SOPs in National Environmental Specimen Bank III, 2012.

    10

    10. NIER, Application of the Cryogenic Environmental Samples for the Coastal Environment Pollutants Background Monitoring I, 2016.

    11

    11. NIER, Evaluation of the Measurement Uncertainty from the SOP of the Environmental Specimen Bank I, 2014.

    12

    12. NIER, Evaluation of the Measurement Uncertainty from the SOP of the Environmental Specimen Bank II, 2015.

    13

    13. NIER, The Characteristics of Heavy Metal Accumulations in Feral Pigeon (Columba Livia) as an Environmental Pollution Indicator, 2013.

    14

    14. NIER, The comparative study on the anthropogenic and natural effects on the heavy metal contents of coniferous leaves, 2013.

    15

    15. A. Alfani, G. Maisto, M. V. Prati, and D. Baldantoni, Atmos. Environ., 35, 3553-3559 (2001).

    16

    16. N. Ratola, A. Alves, and E. Pillakis, Water Air Soil Pollut., 215, 189-203 (2011).

    17

    17. T. Sawidis, J. Breuste, M. Mitrovic, P. Pavlovic, and K. Tsigaridas, Environ. Pollut., 159, 3560-3570 (2011).

    18

    18. A. aghaei, H. Khademi, and S. Eslamian, Helix, 7(5), 1873-1887 (2017).

    19

    19. S. Norouzi, H. Khademi, A. F. Cano, and J. A. Acosta, Ecolo. Indic., 57, 64-73 (2015).

    20

    20. M. M. Al-Alawi and K. L. Mandiwana, J. hazard. mater., 148, 43-46 (2007).

    21

    21. S. K. Prajapati and B. D. Tripathi, Environ. Pollut., 151, 543-548 (2008).

    22

    22. N. Ratola, J. M. Amigo, and A. Alves, Chemosphere, 81, 1517-1525 (2010).

    23

    23. J. Klanova, P. Cupr, D. Barakova, Z. Seda, P. Andel, and I. Holoubek, Environ. Pollut., 157, 3248-3254 (2009).

    24

    24. S. A. S. Petkovsek, F. Batic, and C. R. Lasnik, Environ. Pollut., 151, 287-291 (2008).

    25

    25. F. D. Nicola, V. Spagnuolo, D. Baldantoni, L. Sessa, A. Alfani, R. Bargagli, F. Monaci, S. Terracciano, and S. Giordano, Chemosphere, 92, 1224-1230 (2013).

    26

    26. H. Harmens, L. Foan, V. Simon, and G. Mills, Environ. Pollut., 173, 245-254 (2013).

    27

    27. M. Chropenova, E. K. Greguskova, P. Karaskova, P. Pribylova, P. Kukucka, D. Barakova, and P. Cupr, Ecol. Indic., 66, 132-142 (2016).

    28

    28. M. Y. Chun, C. S. Lim, and T. W. Kim, Korean J. of Environ. Agric., 18(2), 135-139 (1999).

    29

    29. M. Urbat, E. Lehndorff, and L. Schwark, Atmos. Environ., 38, 3781-3792 (2004).

    30

    30. E. Lehndorff and L. Schwark, Atmos. Environ., 44, 2822-2829 (2010).

    31

    31. G. Bertolotti, E. C. Rada, M. Ragazzi, A. Chiste, and S. Gialanella, Aerosol and Air Qual. Res., 14, 677-685(2014).

    32

    32. T. Piccardo, M. Pala, B. Bonaccurso, A. Stella, A. Redaelli, G. Paola, and F. Valerio, Environ. Pollut., 133, 293-301(2005).

    33

    33. M. Y. Chun, J. Korean Soc. Environ. Anal., 13(4), 237-244 (2010).

    34

    34. S. Norouzi and H. Khademi, Eurasian J. of Soil Sci., 4(3), 144-152 (2015).

    35

    35. E. Simon, M. Braun, A. Vidic, David Bogyo; I. Fabian, and B. Tothned, Environ. Pollut., 159, 1229-1233 (2011).

    36

    36. M. Tomasevic, Z. Vukmirovic, S. Rajsic, M. Tasic, and B. Stevanovic, Chemosphere, 61, 753-760 (2005).

    37

    37. M. Tomasevic and M. Anicic, Phys., Chem. Technol., 8(1), 1-13 (2010).

    38

    38. R. J. Leonard, C. McArthur, and D. F. Hochuli, Urban For. Urban Green., 20, 249-253 (2016).

    39

    39. NIER, Annual Report of Atmosphere 2016, NIERGP2017-078, 2017.

    40

    40. C. H. Jung, Y. S. Chun, and B. C. Choi, J. KOSAE, 19(5), 515-528 (2003).

    41

    41. G. N. Bae, M. C. Kim, D. Y. Lim, K. C. Moon, and N. J. Baik, J. KOSAE, 19(2), 167-177 (2003).

    42

    42. J. C. Ko and J. H. Yang, J. Korean Soc. Environ. Technol., 19(3), 263-273 (2018).

    43

    43. Y. K. Lee, K. J. Lee, J. S. Lee, and E. S. Shin, J. KOSAE, 28(6), 666-674 (2012).

    44

    44. J. Stamenkovic and M. S. Gustin, Enviro. Sci. Technol., 42, 1367-1372 (2009).

    45

    45. P. H. Freer-Smith, K. P. Beckett, and G. Taylor, Environ. Pollut., 133, 157-167 (2005).

    46

    46. J. V. Räsänen, T. Holopainen, J. Joutsensaari, C. Ndam, P. Pasanen, Å. Rinnan, and M. Kivimäenpää, Environ. Pollut., 183, 64-70 (2013).

    47

    47. National Institute of Forest Science, Urban Forests Research Center, Announcement, 2017.

    48

    48. National Law Information Center, Enforcement rule of the Soil Environment Conservation Act, Appendix 3, The Criteria of Soil Pollution Concerns, 2017.

    49

    49. A. Parzych and J. Jonczak, J. Ecol. Eng., 15(3), 29-38(2014).

    50

    50. M. Coskun, Bull. Environ. Contam. Toxicol., 76, 320-326 (2006).

    51

    51. E. Simon, M. Braun, A. Vidic, D. Bogyo, I. Fabian, and B. Tothmeresz, Environ. Pollut., 159, 1229-1233 (2011).

    52

    52. M. Tomasevic, Z. Vukmirovic, S. Rajsic, M. Tasic, and B. Stevanovic, Chemosphere, 61, 753-760 (2005).

    53

    53. M. Tomasevic and M. Anicic, Physic. Chem. Technol., 8(1), 1-13 (2010).

    54

    54. R. J. Leonard, C. mcArthur, and D. F. Hochuli, Urban For. Urban Green., 20, 249-253 (2016).

    55

    55. S. G. Yoo, T. W. Kim, and M. Y. Chun, Korean J. Environ. Agric., 18(2), 116-121 (1999).

    56

    56. Q. Liu, Y. Liu, D. Hu, and X. Wang, Chem. Speciation Bioavailab., 23(4) (2011).

    57

    57. T. A. Tomashuk, T. M. Truong, M. Mantha, and A. E. McGowin, Atmos. Environ., 51, 196-202

    58

    58. N. Ratola, S. Lacorte, D. Barcelo, and A. Alves, Talanta, 77, 1120-1128 (2009).

    59

    59. M. Lee, Y. J. Lim, S. U. Lee, B. J. Kong, S. D. Lee, and J. S. Han, J. KOSAE, 23(5), 515-525 (2007).

    60

    61. H. M. Hwang, T. L. Wade, and J. L. Sericano, Atmos. Environ., 37, 2259-2267 (2003).

    상단으로 이동

    분석과학