Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Development of latent fingerprints contaminated with ethanol on paper surfaces

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2019, v.32 no.3, pp.105-112
    https://doi.org/10.5806/AST.2019.32.3.105
    Eun-Jung Park (Graduate School of Forensic Science, Soonchunhyang University)
    (Graduate School of Forensic Science, Soonchunhyang University)
    • Downloaded
    • Viewed

    Abstract

    Fingerprints may be contaminated with ethanol solutions. In order to solve the case, the law enforcement agency may need to visualize the fingerprint from these samples, but the development method has not been studied. The paper with latent fingerprint was contaminated with ethanol solution and then the blurring of ridge detail was observed. As a result, when the copy paper was contaminated with ethanol solutions of less than 75 % (v/v), the amino acid components of latent fingerprint residue blurred but lipid components of latent fingerprint residue didn’t blurred. On the other hand, when the paper was contaminated with ethanol solution of more than 80 % (v/v), the amino acid components of latent fingerprint didn’t blurred but the lipid components of latent fingerprint blurred. Therefore, it is found that the paper contaminated with ethanol solutions of less than 75 % (v/v) should be treated by oil red O (ORO) enhancing lipid components, and the paper contaminated with ethanol solutions of 80 % (v/v) or more should be treated by 1,2-indandione/zinc (1,2-IND/ Zn) enhancing amino acid components. The blurring of ridge detail was not observed when the fingerprints were deposited with fingers contaminated with ethanol solution. This fingerprints were treated with 1,2-IND/ Zn or ORO to compare the latent fingerprint development ability, and using 1,2-IND/Zn was able to visualize the latent fingerprint more clearly than using ORO.

    keywords
    ethanol, contaminated fingerprint, paper, 1, 2-indandione/zinc (1, 2-IND/Zn), oil red O (ORO), blurring


    Reference

    1

    1. R. S. Croxton, M. G. Baron, D. Butler, T. Kent, and V. G. Sears, Forensic Sci. Int., 199, 93-102 (2010).

    2

    2. S. L. Hamilton, ‘Fingerprint Analysis: Hints from Prints (Crime Scene Investigation)’, 1st Ed., Minneapolis, Minnesota, 2008.

    3

    3. R. Pfister, Fingerpr. Whorld, 10(39), 64-70 (1985).

    4

    4. J. W. Chung, J. Forensic Ident., 56(1), 6-17 (2006).

    5

    5. C. E. Phillips, D. O. Cole, and G. W. Jones, J. Forensic Ident., 40(3), 135-146 (1990).

    6

    6. J. D. James, C. Pounds, and B. Wilshire, J. Forensic Sci., 36(5), 1368-1375 (1991).

    7

    7. S. Odén and B. V. Hofsten, Nature, 173(4401), 449-450(1954).

    8

    8. R. Sutton, C. Grenci, and L. Hrubesova, J. Forensic Ident., 64(2), 143-156 (2014).

    9

    9. T. Kent, ‘Manual of Fingerprint Development Techniques’, 2nd Ed., Sandridge, Saint Albans, 1998.

    10

    10. V. G. Sears, S. M. Bleay, H. L. Bandey, and V. J. Bowman, Sci. Justice, 52(3), 145-160 (2012).

    11

    11. H. H. Foster, Fingerprint Ident. Mag., 57(6), 3-5 (1976).

    12

    12. R. Ramotowski, A. A. Cantu, M. M. Joullié, and O. Petrovskaia, Fingerpr. Whorld, 23(90), 131-140 (1997).

    13

    13. M. P. Cava, R. L. Litle, and D. R. Napier, J. Am. Chem. Soc., 80(9), 2257-2263 (1958).

    14

    14. S. M. Bleay, V. G. Sears, H. L. Bandey, A. P. Gibson, V. J. Bowman, R. Downham, L. Fitzgerald, T. Ciuksza, J. Ramadani, and C. Selway, ‘Fingerprint Source book’, 1st Ed., Sandridge, Saint Albans, 2012.

    15

    15. R. Grigg, T. Mongkolaussavaratana, C. A. Pounds, and S. Sivagnanam, Tetrahedron Lett., 31(49), 7215-7218(1990).

    16

    16. C. A. Pounds, R. Grigg, and T. Mongkolaussavaratana, J. Forensic Sci., 35(1), 169-175 (1990).

    17

    17. M. Stoilovic and C. Lennard, ‘NCFS Workshop Manual:Fingermark Detection & Enhancement’, 6th Ed., Canberra, Australia, 2012.

    18

    18. E. R. Menzel, ‘Fingerprint Detection with Laser’, 2nd Ed., Basel, New York, 1999.

    19

    19. K. Braasch, M. de la Hunty, J. Deppe, X. Spindler, A. A. Cantu, P. Maynard, C. Lennard, and C. Roux, Forensic Sci. Int., 230(1-3), 74-80 (2013). Analytical Science & Technology

    20

    20. A. Beaudoin, J. Forensic Ident., 54(4), 413-421 (2004).

    21

    21. B. A. J. Fisher, ‘Techniques of crime scene investigation’, 7th Ed., Boca Raton, Florida, 2003.

    22

    22. K. Guigui and A. Beaudoin, J. Forensic Ident., 54(4), 550-580 (2007).

    23

    23. Y. Cohen, M. Azoury, and M. L. Elad, J. Forensic Ident., 62(1), 54-60 (2012).

    24

    24. D. S. Maslanka, J. Forensic Ident., 66(2), 137-154 (2016).

    25

    25. S. Chadwick, M. Neskoski, X. Spindler, C. Lennard, and C. Roux, Forensic Sci Int., 273, 153-160 (2017).

    26

    26. N. A. Bowden, J. P. M. Sanders, and M. E. Bruins, J. Chem. Eng. Data, 63(3), 488-497 (2018).

    27

    27. T. I. Taylor, L. Larson, and W. Johnson, Ind. Eng. Chem., 28, 616-618 (1936).

    28

    28. R. S. Ramotowski, ‘Lee and Gaensslen's Advances in Fingerprint Technology’, 1st Ed., Boca Raton, Florida, 2001.

    29

    29. S. Itoh and T. Nakayama, Jpn. J. Physiol., 2(3), 248-253 (1952).

    30

    30. E. Serrano and V. Sturelle, J. Can. Soc. Forensic Sci., 43(3), 108-116 (2010).

    상단으로 이동

    Analytical Science and Technology