- P-ISSN 1225-0163
- E-ISSN 2288-8985
액체시료 중 89Sr와 90Sr을 자동핵종분리장치를 이용하여 Sr-resin으로 분리-정제하고, 액체섬광계수기(LSC)로 동시 분석하는 방법을 연구하였다. 액체시료 0.5 kg 중 방사성스트론튬을 탄산염 형태로 농축하고, Sr-resin 2 mL (Bed volume)으로 분리하였다. 유량이 최대 1 mL min−1까지 가능한 중력법과, 유량 2 mL min−1, 4 mL min−1 조건에서, Sr과 방해이온들의 거동을 평가하였다. LSC를 이용해 섬광용액을혼합하지 않은 Cerenkov mode와, 섬광용액을 혼합한 Scintillation mode에서 측정한 결과를 이용해 정제된 89Sr와 90Sr의 방사능을 동시에 분석하였다. 표준선원을 이용해 90Sr/89Sr의 방사능 비가 1:1, 1:2, 1:5 되도록 탈염수를 이용해 모의시료를 준비하였고, 89Sr 방사능은 0.5~10 Bq kg−1, 90Sr 방사능은 0.5~50 Bq kg−1의 범위이다. Sr의 회수율은 68~94%이고, 89Sr의 상대편의는 -5~20%, 90Sr 방사능의 상대편의는 -10 ~10%로 나타났다.
This study described the analytical method for simultaneous determination of 89Sr and 90Sr in liquid sample using automated separation system. Radiostrontium in 0.5 kg of liquid sample was concentrated as SrCO3 to reduce the volume of sample, and purified from the sample using Sr-resin 2 mL (BV, Bed volume). The behavior of Sr and interferences such as Ba, Ca and Y were estimated with various flow rate ranging from 1 to 4 mL min−1. The detailed procedure for the purification of Sr on Sr-resin was presented. The purified radiostronitum was measured in Cerenkov mode and then measured in Scintillation mode by mixing scintillation cocktail. The measured value in both modes were used to calculate the activity of 89Sr and 90Sr. The performance tests were carried out the lab-control-sample having various activity ratio of between 89Sr and 90Sr. The recovery of Sr was ranged from 68 to 94 %. The relative bias of 89Sr activity was ranged from -5 to 20 %, and it was ranged from -10 to 10 % for 90Sr.
1. KAERI, Nuclear Data Center at KAERI, http://atom. kaeri.re.kr, Accessed Dec 12, 2020.
2 N. Vajda and C. K. Kim, Appl Radiat Isotopes, 68(12), 2306-2326 (2010).
3. Y. Shao, G. Yang, H. Tazoe, L. Ma, M. Yamada and D. Xu, J Environ Radioactiv, 192, 321-333 (2018).
4. H. Kim, J. M. Lim, K. H. Chung and W. Lee, J Radioanal Nucl Chem, 312(3), 523-529 (2017).
5. Y. Jung, H. Kim, K. S. Suh, M. J. Kang and K. H. Chung, Journal of Nuclear Fuel Cycle and Waste Technology, 13(2),123-130 (2015).
6. KINS, ‘Marine Environmental Radioactivity Survey’, Korea Institute of Nuclear Safety, KINS/ER-092, (2018), Daejeon.
7. Q. Chen, X. Hou, Y. Yu, H. Dahlgaard and S. P. Nielsen, Anal Chim Acta, 466(1), 109-116 (2002).
8. S. L. Maxwell, B. K. Culligan, J. B. Hutchison, R. C. Utsey and D. R. McAlister, J. Radioanal Nucl. Chem., 303(1), 709-717 (2015).
9. H. Kim, Y. G. Kang, Y.-J. Lee, S.-D. Choi, J.-M. Lim and J.-H. Lee, Talanta, 217, 121055 (2020).
10. HASL-300, Sr-01-RC, Sr-02-RC, In: 28th edition In:Chieco, N.A. (Ed.), The Procedures Mannual of the Environmental Measurements Laboratory, New York, (1997).
11. C. S. Kim, M. H. Lee, C. K. Kim and K. H. Kim, J. Environ. Radioactiv., 40(1), 75-88 (1998).
12. E. P. Horwitz, M. L. Dietz and R. Chiarizia, J. Radioanal. Nucl. Chem., 161(2), 575-583 (1992).
13. S. L. Maxwell, B. K. Culligan and P. J. Shaw, J. Radioanal. Nucl. Chem., 295(2), 965-971 (2013).
14 S. B. Clark, J. Radioanal. Nucl. Chem., 194(2), 297-302 (1995).
15. C. W. Lee, K. H. Hong, M. H. Lee, Y. H. Cho, G. S. Choi, Y. W. Choi and S. H. Moon, J. Radioanal. Nucl. Chem., 243(3), 767-773 (2000).
16. ISO, ‘Water quality-Strontium 90 and strontium 89-Test methods using liquid scintillation counting or proportional counting’, ISO 13160 (2012).
17. C. K. Kim, A. Al-Hamwi, A. Törvényi, G. Kis-Benedek and U. Sansone, Appl. Radiat. Isotopes, 67(5), 786-793 (2009).
18. IAEA, ‘Rapid simultaneous determination of 89Sr and 90Sr in milk: a procedure using cerenkov and scintillation counting’, International Atomic Energy Agency, (2013), Vienna, Austria.
19. O. D. C. M. Guidance, USNRC, NUREG, 1301 (1991).
20. A. A. Moghissi, H. W. Godbee and S. A. Hobart, Radioactive waste technology, American Society of Mechanical Engineers (1986).
21. E. Philip Horwitz, R. Chiarizia and M. L. Dietz, Solvent. Extraction and Ion Exchange., 10(2), 313-336 (1992)