- P-ISSN 1225-0163
- E-ISSN 2288-8985
The objective of this study was to investigate urinary cut-off concentrations of quetiapine and risperidone for distinction between normal and abnormal/non-takers who were being placed on probation. Liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was employed for determination of antipsychotic drugs in urine from mentally disordered probationers. The optimal cut-off values of antipsychotic drugs were calculated using receiver operating characteristic (ROC) curve analysis. The sensitivity and specificity of the method for the detection of antipsychotic drugs in urine were subsequently evaluated. The area under the ROC curve (AUC) was 0.927 for norquetiapine and 0.791 for 9-hydroxyrisperidone, respectively. These antipsychotic drugs are classified readily in the ROC curve analysis. The cut-off values for distinguishing regular and irregular/non-takers were 39.1 ng/mL for norquetiapine and 67.9 ng/mL for 9-hydroxyrisperidone, respectively. The results of this study suggest the cut-off values of quetiapine and risperidone were highly useful to distinguish regular takers from irregular/non-takers.
1. Supreme Prosecutors' Office, ‘2019 Analytical Statistics on Crime’, Seoul, Korea, 2019.
2. S. I. Jang, Regal Theory & Practice Rev., 4, 103-128(2016).
3. B. S. Kim, Law Rev., 60. 195-217 (2019).
4. J. H. Cho, S. H. Kang, S. J. Lee, J. G. Kim and M. J. Joo, J. Korean Soc. Biol. Ther. Psychiatry, 10, 172-183(2004).
5. H. A. Pincus, Schizophr. Bull., 36, 109-111 (2010).
6. H. Ascher-Svanum, D. E. Faries, B. Zhu, F. R. Ernst, M. S. Swartz and J. W. Swanson, J. Clin. Psychiatry, 67, 453-460 (2006).
7. R. Mandrioli, L. Mercolini, D. Lateana, G. Boncompagni and M. Augusta Raggi, J. Chromatogr. B, 879, 167-173(2011).
8. M. Grapp, H. H. Maurer and H. Desel, Drug Test. Anal., 8, 816-825 (2016).
9. C. Danel, C. Barthélémy, D. Azarzar, H. Robert, J. P. Bonte, P. Odou and C. Vaccher, J. Chromatogr. A, 1163, 228-236 (2007).
10. S. Feng, J. R. Enders, O. T. Cummings, E. C. Strickland, T. McIntire and G. McIntire, J. Anal. Toxicol., 44, 331-338 (2020).
11. G. J. Dear, I. J. Fraser, D. K. Patel, J. Long and S. Pleasance, J. Chromatogr. A, 794, 27-36 (1998).
12. M. De Meulder, B. M. Remmerie, R. de Vries, L. L. Sips, S. Boom, E. W. Hooijschuur, N. C. van de Merbel and P. M. Timmerman, J. Chromatogr. B, 870, 8-16 (2008).
13. Y. H. Lee, S. S. Kweon, J. S. Choi, J. A. Rhee, H. S. Nam, S. K. Jeong, K. S. Park, H. Y. Kim, S. Y. Ryu, S. W. Choi, B. H. Kim and M. H. Shin, Kidney Blood Press. Res., 36, 290-300 (2012).
14. K. Polanska, A. Krol, P. Kaluzny, D. Ligocka, K. Mikolajewska, S. Shaheen, R. Walton and W. Hanke, Int. J. Environ. Res. Public Health, 13, 1216 (2016).
15. S. I. Pak and T. H. Oh, J. Vet. Clin., 33, 97-101 (2016).
16. S. Y. Kim, H. S. Kim, J. C. Cheong and J. Y. Kim, J. Anal. Toxicol., 44, 784-796 (2020).
17. S. P. Elliott, D. W. S. Stephen and S. Paterson, Sci. Justice, 58, 335-345 (2018).
18. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Veterinary Medicine (CVM), ‘Bioanalytical Method Validation-Guidance for Industry’, 2018.
19. J. Rochon, M. Gondan and M. Kieser, BMC Med. Res. Methodol., 12, 81 (2012).
20. R. R. Wilcox, Biometrical J., 32, 771-780 (1990).