Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Discrimination of the geographical origin of commercial sesame oils using fatty acids composition combined with linear discriminant analysis

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2021, v.34 no.3, pp.134-141
    https://doi.org/10.5806/AST.2021.34.3.134






    • Downloaded
    • Viewed

    Abstract

    In this study, the fatty acid (FA) composition of commercial sesame oils (n = 62) was investigated using gas chromatography with flame ionization detector (GC-FID). Multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA), were applied to the chromatographic data of the FAs to discriminate the geographical origin of sesame oils. A statistically significant difference was observed in the content of C16:0, C18:0, C18:1, and C18:2 between domestic and imported sesame oils. A satisfactory recovery rate of 82.8-100.2 % was achieved for C16:0, C18:0, C18:1, C18:2, and C18:3. The correlation of C16:0, C18:1, and C18:2 in domestic sesame oils showed opposite trends compared to imported oils. The PCA plot demonstrated that sesame oils were clustered in distinct groups according to their origin. LDA was used to predict sesame oil samples in one of the two groups. C16:0 (Wilks λ = 0.361) and C18:1 (Wilks λ = 0.637) demonstrated the highest discriminant power for classifying the origin of the samples. The correct prediction rates were 88.9 % and 100 % for the domestic and imported samples, respectively. Further, 60 of the 62 sesame oil samples (96.8 %) were correctly classified, indicating that this approach can be used as a valuable tool to predict and classify the geographical origin of sesame oils.

    keywords
    sesame oils, fatty acid, correlation matrix, principal component analysis, linear discriminant analysis


    Reference

    1

    1. Y. W. Park, P. S. Chang and J. H. Lee, Food Chem., 123, 377-383 (2010).

    2

    2. M. Namiki, Food Rev. Int., 11, 281-329 (1995).

    3

    3. S. N. Ryu, K. S. Kim and E. J. Lee, Korean J. Crop Sci., 47(S), 140-149 (2002).

    4

    4. G. S. Kim, D. H. Kim, M. R. Jeong, I. B. Jang, K. B. Shim, C. H. Kang, S. E. Lee, N. S. Seong and K. S. Song, Korean J. Crop Sci., 49(6), 496-502 (2004).

    5

    5. H. W. Kim, C. U. Choi and S. J. Woo, Korean J. Food Sci. Technol., 30(4), 739-744 (1998).

    6

    6. J. Y. Lee, M. J. Kim and E. O. Choe, Korean J. Food Sci. Technol., 40(1), 15-20 (2008).

    7

    7. S. T. Ji, J. Korean Soc. Int. Agric., 31(1), 34-42 (2019).

    8

    8. H. Y. Seo, J. H. Ha, D. B. Shin, S. L. Shim, K. M. No, K. S. Kim, K. B. Lee and S. B. Han, J. Am. Oil Chem. Soc., 87(6), 621-626 (2010).

    9

    9. S. K. Bae and K. T. Lee, Korean J. Food Preserv., 16(4), 594-598 (2009).

    10

    10. C. T. Kim, Food Ind. Nutr., 15(1), 27-30 (2010).

    11

    11. D. Peng, Y. Bi, X. Ren, G. Yang, S. Sun and X. Wang, Food Chem., 188, 415-421 (2015).

    12

    12. D. S. Lee, B. S. Noh, S. Y. Bae and K. Kim, Anal. Chim. Acta, 358, 163-175 (1998).

    13

    13. J. Y. Joo, Y. H. Yeo and N. R. Lee, J. Korean Soc. Food Sci. Nutr., 46(6), 739-743 (2017).

    14

    14. J. A. Shin and K. T. Lee, Korean J. Food Sci. Technol., 37(5), 856-860 (2005).

    15

    15. F. Longobardi, A. Ventrella, G. Casiello, D. Sacco, L. Catucci, A. Agostiano and M. G. Kontominas, Food Chem., 133, 579-584 (2012).

    16

    16. Y. S. Kim, C. Scotter, M. Voyiagis and M. Hall, Food Sci. Biotech., 7(1), 18-22 (1998).

    17

    17. Y. Liu, Z. Xia, L. Yao, Y. Wu, Y. Li, S. Zeng and H. Li, J. Food Compost. Anal., 84, 103327 (2019).

    18

    18. H. J. Jeon, S. C. Lee, Y. J. Cho, J. H. Oh, K. S. Kwon and B. H. Kim, Food Chem., 167, 363-369 (2015).

    19

    19. G. S. Jin, J. G. Kim, Y. H. Lee, J. Y. Kim, C. C. Akoh, H. S. Chun, S. D. Ahn and B. H. Kim, J. Oleo Sci., 66(4), 337-344 (2017).

    20

    20. H. J. Jeon, I. H. Kim, C. Lee, H. D. Choi, B. H. Kim, and C. C. Akoh, J. Am. Oil Chem. Soc., 90, 337-347(2013).

    21

    21. H. Diraman, H. Saygi and Y. Hisil, J. Am. Oil Chem. Soc., 88, 1905-1915 (2011).

    22

    22. C. Li, Y. Yao, G. Zhao, W. Cheng, H. Liu, C. Liu, Z. Shi, Y. Chen and S. Wang, J. Agric. Food Chem., 59, 12493-12498 (2011).

    23

    23. S. Lanteri, C. Armanino, E. Perri and A. Palopoli, Food Chem., 76, 501-507 (2002).

    24

    24. M. Monfreda, L. Gobbi and A. Grippa, Food Chem.,145, 584-592 (2014).

    25

    25. Ministry of Food and Drug Safety, Experimental method of Korean Food Standards Codex – fatty acids analysis, Republic of Korea, 2016.

    26

    26. The jamovi project. jamovi.(Version 1.1) [Computer Software]. Retrieved from https://www.jamovi.org.

    27

    27. B. A. Were, A. O. Onkware, S. Guda, M. Welander, and A. S. Carlsson, Field Crops Res., 97, 254-260 (2006).

    28

    28. World Health Organization (WHO), The joint FAO/WHO expert consultation on fats and fatty acids in human nutrition, Geneva, 2008.

    29

    29. A. P. Simopoulos, Biomed. Pharmacother., 56, 365-379(2002)

    상단으로 이동

    Analytical Science and Technology