Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Concentration variability of atmospheric radon and gaseous pollutants at background area of Korea between 2017 and 2018

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2022, v.35 no.1, pp.32-40
    https://doi.org/10.5806/AST.2022.35.1.32
    Won-Hyung Kim (Department of Chemistry and Cosmetics, Jeju National University)
    Hyo-Sun Yang (Department of Chemistry and Cosmetics, Jeju National University)
    Jun-Oh Bu (Department of Chemistry and Cosmetics, Jeju National University)
    Chang-Hee Kang (Department of Chemistry and Cosmetics, Jeju National University)
    Jung-Min Song (Department of Chemistry and Cosmetics, Jeju National University)
    S. Chambers (Australian Nuclear Science and Technology Organisation, Australia)
    • Downloaded
    • Viewed

    Abstract

    The concentrations of radon in the atmosphere were measured at the Gosan site of Jeju Island during 2017-2018, in order to investigate the time-series variation characteristics and the dependency of airflow transport pathways. The mean 222Rn concentration was 2,480 mBq m−3, and its monthly concentration in November was 3,262 mBq m-3, more than twice as that in July (1,459 mBq m−3). The diurnal radon concentrations increased throughout the nighttime to the maximum (2,862 mBq m−3) at around 7 a.m., then gradually decreased throughout the daytime by the minimum (1,997 mBq m−3) at around 3 p.m. The seasonal and monthly variations of CO, NO2, O3 showed a roughly similar pattern to that of radon for the same period, as high in winter and low in summer. The cluster back trajectory analysis described that about 60 % of overall airflow pathways was influenced by the airflow from China. The concentrations of radon and gaseous pollutants were relatively high as the airflow was influenced by China continent, but comparatively much lower as influenced by the northern Pacific Ocean.

    keywords
    atmospheric radon, gaseous pollutant, Gosan site, cluster back trajectory, airflow pathways


    Reference

    1

    1. I. C. Choi, S. H. Shin and W. K. Jo, Journal of Environmental Toxicology, 24(3), 203-211 (2009).

    2

    2. D. Vinson, T. R. Campbell and A. Vengosh, Applied Geochemistry, 23(9), 2676-2685 (2008).

    3

    3. K. H. Moon, J. S. Kim, J. K. Ahn, H. C. Kim and H. M. Lee, J. Petrol. Soc. Korea, 18(4), 279-291 (2009).

    4

    4. J. Crawford, S. D. Chambers, C.-H. Kang, A. Griffiths and W.-H. Kim, Atmospheric Pollution Research, 6(3), 529-539 (2015).

    5

    5. J. Miles, Journal of Hazardous Materials, 61, 53-58(1988).

    6

    6. IARC (The International Agency for Research on Cancer), “Agents Classified by the IARC Monographs, Volumes 1-125, List of Classifications”, WHO (2019).

    7

    7. U.S. EPA (Environmental Protection Agency), EPA Assessment of Risks from Radon in Homes, EPA 402-R-03-003 (2003).

    8

    8. NRC (National Research Council), Health risk of radon and other internally deposited alpha emitters, report of the Committee on UNSCEAR. Sources and Effects of Ionizing Radiation. UNSCEAR 2000 Report (2000).

    9

    9. W. Zahorowski, S. D. Chambers and A. Henderson-Sellers, Journal of Environmental Radioactivity, 76(1-2), 3-33 (2004).

    10

    10. B. Zhang, H. Liu, J. H. Crawford, G. Chen, T. D. Fairlie, S. Chambers, C.-H. Kang, A. G. Williams, K. Zhang, D. B. Considine, M. P. Sulprizio, R. M. Yantosca, Atmos. Chem. Phys., 21(3), 1861-1887 (2021).

    11

    11. S. D. Chambers, S. B. Hong, A. G. Williams, J. Crawford, A. D. Griffiths and S. J. Park, Atmospheric Chemistry and Physics, 14(18), 1-36 (2014).

    12

    12. B. J. Huebert, T. Bates, P. B. Russell, G. Shi, Y. J. Kim, K. Kawamura, G. Carmichael and T. Nakajima, J. Geophys. Res., 108, 8633 (2003).

    13

    13. J. M. Song, H. Y. Yang, W. H. Kim, C. H. Kang and S. Chambers, J. Korean Soc. Atmos. Environ., 37(6), 907-918 (2021).

    14

    14. S. Whittlestone and W. Zahorowski, Journal of Geophysical Research, 103(D13), 16743-16751 (1998).

    15

    15. R. R. Draxler and G. D. Rolph, HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website, http://ready.arl.noaa.gov/HYSPLIT_traj.php (2013).

    16

    16. NIER (National Institute of Environmental Research), “Nationwide survey (2017-2018) of indoor radon at home in Korea”, NIER-RP2018-201, p11 (2018).

    17

    17. Y. S. Kim, C. M. Lee, K. Y. Kim, H. J. Jeon, J. C. Kim and T. Iida, Korean Journal of Environmental Health Sciences, 33(4), 283-292 (2007).

    18

    18. G. Pitari, E. Coppari, N. De Luca and P. Di Carlo, Environmental Earth Sciences, 71(5), 2353-2359 (2014).

    19

    19. M. A. Zoran, M. R. Dida, A. T. Zoran, L. F. Zoran and A. Dida, Journal of Radioanalytical Nuclear Chemistry, 296(3), 1179-1192 (2013).

    20

    20. Chan, S. W., C. W. Lee and K. C. Tsui, Journal of Environmental Radioactivity, 101(6), 494-503 (2010).

    21

    21. S. Chambers, W. Zahorowski, K. Matsumoto and M. Uematsu, Atmos. Environ., 43(2), 271-279 (2009).

    22

    22. W. Zahorowski, S. Chambers, T. Wang, C. H. Kang, I. Uno, S. Poon, S. N. Oh, S. Wercqynski, J. Kim and A. Henderson-Sellers, Tellus, 57(2), 124-140 (2005).

    23

    23. E. H. Kim, P. S. Kim, C. Y. Kim, K. S. Lee and K. D. Kwon, Bulletin of Environmental Sciences, 6(2), 129-136 (1985).

    24

    24. F. A. Duckworth and J. S. Sandberg, Bulletin of the American Meteorological Society, 35, 198-207 (1954).

    25

    25. S. D. Chambers, C. H. Kang, A. G. Williams, J. Crawford, A. D. Griffiths, K. H. Kim and W. H. Kim, Aerosol and Air Quality Research, 16(4), 958-976 (2016).

    상단으로 이동

    Analytical Science and Technology