- P-ISSN 1225-0163
- E-ISSN 2288-8985
A transmission Raman spectroscopy-based quantitative model, which can analyze the content of a drug product containing naproxen sodium as its active pharmaceutical ingredient (API), was developed. Compared with the existing analytical method, i.e., high-performance liquid chromatography (HPLC), Raman spectroscopy exhibits high test efficiency owing to its shorter sample pre-treatment and measurement time. Raman spectroscopy is environmentally friendly since samples can be tested rapidly via a nondestructive method without sample preparation using solvent. Through this analysis method, rapid on-site analysis was possible and it could prevent the production of defective tablets with potency problems. The developed method was applied to the assays of the naproxen sodium of coated tablets that were manufactured in commercial scale and the content of naproxen sodium was accurately predicted by Raman spectroscopy and compared with the reference analytical method such as HPLC. The method validation of the new approach was also performed. Further, the specificity, linearity, accuracy, precision, and robustness tests were conducted, and all the results were within the criteria. The standard error of cross-validation and standard error of prediction values were determined as 0.949 % and 0.724 %, respectively.