바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

메뉴

치과 임플란트 표면의 과거, 현재, 그리고 미래

Past, Present and Future of the Dental Implant Topography

Abstract

Osseointegration means the interlocking of bone and implant surface. The surface of dental implants played a key role for osseointegration. Commercially pure titanium implants (CPTi) grade 4 implant shows high corrosion resistance and fatigue strength. Most commercial implants use this Titanium and modify the surface with moderate roughness (1~100μm). Moderately roughness offers most effective bone to implant contact and highest removal torque based on the biological stability. As in the surface roughness, biofilm can be formed easily, peri-implantitis is a next challenge of the implant surface modification. It has been expected to overcome the biological complication of dental implants with the nano technology. However, nano technology has been studied limitedly in the laboratory. The implant surface will be developed with the aim of having fast osseointegration, long-term BIC interlocking, and high bacterial resistance.

keywords
Dental implants, Osseointegration, Titanium, Bone-implant interface

참고문헌

1.

1. Smeets R, Stadlinger B, Schwarz F, et al. Impact of Dental Implant Surface Modifications on Osseointegration. Biomed Res Int. 2016;2016:6285620. doi:10.1155/2016/6285620

2.

2. Brånemark PI, Hansson BO, Adell R, et al. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1-132.

3.

3. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants. 1986;1(1):11-25.

4.

4. Albrektsson T, Sennerby L, Wennerberg A. State of the art of oral implants. Periodontol 2000. 2008;47:15-26. doi:10.1111/j.1600-0757.2007.00247.x

5.

5. Nedir R, Bischof M, Szmukler-Moncler S, Bernard JP, Samson J. Predicting osseointegration by means of implant primary stability. Clin Oral Implants Res. Oct 2004;15(5):520-8. doi:10.1111/j.1600-0501.2004.01059.x

6.

6. Lages FS, Douglas-de Oliveira DW, Costa FO. Relationship between implant stability measurements obtained by insertion torque and resonance frequency analysis: A systematic review. Clin Implant Dent Relat Res. Feb 2018;20(1):26-33. doi:10.1111/cid.12565

7.

7. Schulte W, Lukas D. Periotest to monitor osseointegration and to check the occlusion in oral implantology. J Oral Implantol. 1993;19(1):23-32.

8.

8. Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent. Nov 2000;84(5):522-34. doi:10.1067/mpr.2000.111966

9.

9. Almas K, Smith S, Kutkut A. What is the Best Micro and Macro Dental Implant Topography? Dent Clin North Am. 072019;63(3):447-460. doi:10.1016/j.cden.2019.02.010

10.

10. Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions. Periodontol 2000. 02 2017;73(1):22-40. doi:10.1111/prd.12179

11.

11. Wennerberg A, Albrektsson T. Suggested guidelines for the topographic evaluation of implant surfaces. Int J Oral Maxillofac Implants. 2000 May-Jun 2000;15(3):331-44.

12.

12. Elias CN, Oshida Y, Lima JH, Muller CA. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque. J Mech Behav Biomed Mater. Jul 2008;1(3):234-42. doi:10.1016/j.jmbbm.2007.12.002

13.

13. Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants. 2010 Jan-Feb 2010;25(1):63-74.

14.

14. Zaugg LK, Astasov-Frauenhoffer M, Braissant O, Hauser-Gerspach I, Waltimo T, Zitzmann NU. Determinants of biofilm formation and cleanability of titanium surfaces. Clin Oral Implants Res. Apr 2017;28(4):469-475. doi:10.1111/clr.12821

15.

15. Schwarz F, Sculean A, Wieland M, et al. Effects of hydrophilicity and microtopography of titanium implant surfaces on initial supragingival plaque biofilm formation. A pilot study. Mund Kiefer Gesichtschir. Dec 2007;11(6):333-8. doi:10.1007/s10006-007-0079-z

16.

16. Schwarz F, Papanicolau P, Rothamel D, Beck B, Herten M, Becker J. Influence of plaque biofilm removal on reestablishment of the biocompatibility of contaminated titanium surfaces. J Biomed Mater Res A. Jun 2006;77(3):437-44. doi:10.1002/jbm.a.30628

17.

17. Jin SH, Lee EM, Park JB, Kim KK, Ko Y. Decontamination methods to restore the biocompatibility of contaminated titanium surfaces. J Periodontal Implant Sci. Jun 2019;49(3):193-204. doi:10.5051/jpis.2019.49.3.193

18.

18. Rizzello L, Sorce B, Sabella S, et al. Impact of nanoscale topography on genomics and proteomics of adherent bacteria. ACS Nano. Mar 2011;5(3):1865-76. doi:10.1021/nn102692m

19.

19. Al-Thobity AM, Kutkut A, Almas K. Microthreaded Implants and Crestal Bone Loss: A Systematic Review. J Oral Implantol. Apr 2017;43(2):157-166. doi:10.1563/aaid-joi-D-16-00170

20.

20. Terheyden H, Lang NP, Bierbaum S, Stadlinger B. Osseointegration--communication of cells. Clin Oral Implants Res. Oct 2012;23(10):1127-35. doi:10.1111/j.1600-0501.2011.02327.x

21.

21. Buser D, Broggini N, Wieland M, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res. Jul 2004;83(7):529-33. doi:10.1177/154405910408300704

22.

22. Wennerberg A, Jimbo R, Stübinger S, Obrecht M, Dard M, Berner S. Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia. Clin Oral Implants Res. Sep 2014;25(9):1041-50. doi:10.1111/clr.12213

23.

23. Wennerberg A, Svanborg LM, Berner S, Andersson M. Spontaneously formed nanostructures on titanium surfaces. Clin Oral Implants Res. Feb 2013;24(2):203-9. doi:10.1111/j.1600-0501.2012.02429.x

24.

24. Stafford GL. Review found little difference between sandblasted and acid-etched (SLA) dental implants and modified surface (SLActive) implants. Evid Based Dent. Sep 2014;15(3):87-8. doi:10.1038/sj.ebd.6401047

25.

25. Alves SA, Rossi AL, Ribeiro AR, et al. Improved tribocorrosion performance of bio-functionalized TiO. J Mech Behav Biomed Mater. 04 2018;80:143-154. doi:10.1016/j.jmbbm.2018.01.038

26.

26. von Wilmowsky C, Bauer S, Roedl S, Neukam FW, Schmuki P, Schlegel KA. The diameter of anodic TiO2 nanotubes affects bone formation and correlates with the bone morphogenetic protein-2 expression in vivo. Clin Oral Implants Res. Mar 2012;23(3):359-66. doi:10.1111/j.1600-0501.2010.02139.x

27.

27. Souza JCM, Sordi MB, Kanazawa M, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 08 2019;94:112-131. doi:10.1016/j.actbio.2019.05.045

28.

28. Alvarez G, González M, Isabal S, Blanc V, León R. Method to quantify live and dead cells in multi-species oral biofilm by real-time PCR with propidium monoazide. AMB Express. Jan 2013;3(1):1. doi:10.1186/2191-0855-3-1

29.

29. Yao S, Feng X, Lu J, et al. Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO. Nanotechnology. Jun 2018;29(24):244003. doi:10.1088/1361-6528/aabac1

30.

30. Ferreira CF, Babu J, Hamlekhan A, Patel S, Shokuhfar T. Efficiency of Nanotube Surface-Treated Dental Implants Loaded with Doxycycline on Growth Reduction of Porphyromonas gingivalis. Int J Oral Maxillofac Implants. 2017 Mar/Apr 2017;32(2):322-328. doi:10.11607/jomi.4975

31.

31. Bijukumar DR, Segu A, Souza JCM, et al. Systemic and local toxicity of metal debris released from hip prostheses: A review of experimental approaches. Nanomedicine. 04 2018;14(3):951-963. doi:10.1016/j.nano.2018.01.001

32.

32. Lee J, Ku Y. What is an ideal implant surface? Indian J Dent Res. 2016 Jul-Aug 2016;27(4):341-342. doi:10.4103/0970-9290.191863

logo