바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

SKEW-ADJOINT INTERPOLATION ON Ax-y IN <TEX>$ALG\mathcal{L}$</TEX>

Skew-Adjoint Interpolation on $Ax=y$ in Alg$\mathcal L$

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2004, v.11 no.1, pp.29-36
Jo, Young-Soo (Department of Mathematics, Keimyung University)
Kang, Joo-Ho (Department of Mathematics, Daegu University)

Abstract

Given vectors x and y in a Hilbert space, an interpolating operator is a bounded operator T such that Tx=y. In this paper the following is proved: Let <TEX>$\cal{L}$</TEX> be a subspace lattice on a Hilbert space <TEX>$\cal{H}$</TEX>. Let x and y be vectors in <TEX>$\cal{H}$</TEX> and let <TEX>$P_x$</TEX>, be the projection onto sp(x). If <TEX>$P_xE=EP_x$</TEX> for each <TEX>$ E \in \cal{L}$</TEX> then the following are equivalent. (1) There exists an operator A in Alg(equation omitted) such that Ax=y, Af = 0 for all f in (<TEX>$sp(x)^\perp$</TEX>) and <TEX>$A=-A^\ast$</TEX>. (2) (equation omitted)

keywords
interpolation problem, subspace lattice, skew-adjoint interpolation problem, <tex> $ALG\mathcal{L}$</tex>

한국수학교육학회지시리즈B:순수및응용수학