ISSN : 1226-0657
Let R be a 2-torsion free <TEX>$\sigma$</TEX>-prime ring with an involution <TEX>$\sigma$</TEX>, U a nonzero square closed <TEX>$\sigma$</TEX>-Lie ideal, Z(R) the center of Rand d a derivation of R. In this paper, it is proved that d = 0 or <TEX>$U\;{\subseteq}\;Z(R)$</TEX> if one of the following conditions holds: (1) <TEX>$d(xy)\;-\;xy\;{\in}\;Z(R)$</TEX> or <TEX>$d(xy)\;-\;yx\;{\in}Z(R)$</TEX> for all x, <TEX>$y\;{\in}\;U$</TEX>. (2) <TEX>$d(x)\;{\circ}\;d(y)\;=\;0$</TEX> or <TEX>$d(x)\;{\circ}\;d(y)\;=\;x\;{\circ}\;y$</TEX> for all x, <TEX>$y\;{\in}\;U$</TEX> and d commutes with <TEX>$\sigma$</TEX>.
(2001). . East- West J. Math., 3, 87-91.
(2002). . Result. Math., 42, 3-8.
(2008). . Journal of Algebra and Discrete Structure, 6, 89-93.
(2007). . Int. J. Algebra, 1, 235-239.
(2008). . Advances in Algebra, 1, 19-26.
(2007). . Afr. Diaspora J. Math., 5, 19-23.
(2007). . Int. J. Algebra, 1, 227-230.
(2007). . Int. J. Algebra, 1, 231-234.
(2007). . Int. J. Algebra, 1, 25-30.
Oukhtite. (2006). . Glasnik Matematicki, 41(1), 57-64. 10.3336/gm.41.1.05.
(2007). . Int. J. Algebra, 1, 241-246.
(2006). . Int. J. Contemp., 1, 439-448.