바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

LIE IDEALS AND DERIVATIONS OF σ-PRIME RINGS

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2010, v.17 no.1, pp.87-92
Shuliang, Huang

Abstract

Let R be a 2-torsion free <TEX>$\sigma$</TEX>-prime ring with an involution <TEX>$\sigma$</TEX>, U a nonzero square closed <TEX>$\sigma$</TEX>-Lie ideal, Z(R) the center of Rand d a derivation of R. In this paper, it is proved that d = 0 or <TEX>$U\;{\subseteq}\;Z(R)$</TEX> if one of the following conditions holds: (1) <TEX>$d(xy)\;-\;xy\;{\in}\;Z(R)$</TEX> or <TEX>$d(xy)\;-\;yx\;{\in}Z(R)$</TEX> for all x, <TEX>$y\;{\in}\;U$</TEX>. (2) <TEX>$d(x)\;{\circ}\;d(y)\;=\;0$</TEX> or <TEX>$d(x)\;{\circ}\;d(y)\;=\;x\;{\circ}\;y$</TEX> for all x, <TEX>$y\;{\in}\;U$</TEX> and d commutes with <TEX>$\sigma$</TEX>.

keywords
<tex> $\sigma$</tex>-prime ring, derivation, <tex> $\sigma$</tex>-Lie ideal

Reference

1.

(2001). . East- West J. Math., 3, 87-91.

2.

(2002). . Result. Math., 42, 3-8.

3.

(2008). . Journal of Algebra and Discrete Structure, 6, 89-93.

4.

(2007). . Int. J. Algebra, 1, 235-239.

5.

(2008). . Advances in Algebra, 1, 19-26.

6.

(2007). . Afr. Diaspora J. Math., 5, 19-23.

7.

(2007). . Int. J. Algebra, 1, 227-230.

8.

(2007). . Int. J. Algebra, 1, 231-234.

9.

(2007). . Int. J. Algebra, 1, 25-30.

10.

Oukhtite. (2006). . Glasnik Matematicki, 41(1), 57-64. 10.3336/gm.41.1.05.

11.

(2007). . Int. J. Algebra, 1, 241-246.

12.

(2006). . Int. J. Contemp., 1, 439-448.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics