바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

SOME FIXED POINT THEOREMS AND EXAMPLE IN <TEX>$\cal{M}$</TEX>-FUZZY METRIC SPACE

SOME FIXED POINT THEOREMS AND EXAMPLE IN M-FUZZY METRIC SPACE

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2010, v.17 no.3, pp.205-209
Park, Jong-Seo (DEPARTMENT OF MATHEMATICS EDUCATION, CHINJU NATIONAL UNIVERSITY OF EDUCATION)

Abstract

We introduce the concept of semi-compatible and weak-compatible in <TEX>$\cal{M}$</TEX>-fuzzy metric space, and prove some fixed point theorem for four self maps satisfying some conditions in <TEX>$\cal{M}$</TEX>-fuzzy metric space.

keywords
fixed point theorem, compatible map, <tex> $\cal{M}$</tex>-fuzzy metric space

참고문헌

1.

Park, Jin Han;Park, Jong Seo;Kwun, Young Chel. (2008). Fixed points in <TEX>$${\mathcal{M}}$$</TEX>-fuzzy metric spaces. Fuzzy Optimization and Decision Making, 7(4), 305-315. 10.1007/s10700-008-9039-9.

2.

(1992). . Bulletin of Calcutta Mathematical Society, 84, 329-336.

3.

Grabiec, M.. (1988). Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3), 385-389. 10.1016/0165-0114(88)90064-4.

4.

George, A.;Veeramani, P.. (1994). On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3), 395-399. 10.1016/0165-0114(94)90162-7.

5.

(1975). . Kybernetica, 11, 326-334.

6.

Oprea, J.. (2008). The propagation of non-Lefschetz type, the Gottlieb group and related questions. Journal of Fixed Point Theory and Applications, 3(1), 63-83. 10.1007/s11784-008-0063-8.

7.

8.

(1960). . Pacific J. Math., 10, 314-334.

한국수학교육학회지시리즈B:순수및응용수학