바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ON THE RADIUS OF CONVERGENCE OF SOME NEWTON-TYPE METHODS IN BANACH SPACES

ON THE RADIUS OF CONVERGENCE OF SOME NEWTON{TYPE METHODS IN BANACH SPACES

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2011, v.18 no.3, pp.219-230
https://doi.org/10.7468/jksmeb.2011.18.3.219
Argyros, Ioannis K. (Cameron university, Department of Mathematics Sciences)
Hilout, Said (Poitiers university, Laboratoire de Mathematiques et Applications)

Abstract

We determine the radius of convergence for some Newton{type methods (NTM) for approximating a locally unique solution of an equation in a Banach space setting. A comparison is given between the radii of (NTM) and Newton's method (NM). Numerical examples further validating the theoretical results are also provided in this study.

keywords
Newton's method, Newton-type method, Banach space, local convergence, radius of convergence, Lipschitz-H<tex> $\ddot{o}$</tex>lder continuity

참고문헌

1.

(2009). . J. Math. Anal. Appl., 359, 642-652. 10.1016/j.jmaa.2009.05.057.

2.

(2001). . Intern. J. Comput. Math., 77, 389-400. 10.1080/00207160108805074.

3.

(2004). . J. Math. Anal. Appl., 298, 374-397. 10.1016/j.jmaa.2004.04.008.

4.

5.

(1979). . J. Assoc. Comput. Mach., 26, 250-258. 10.1145/322123.322130.

6.

7.

(2005). . J. Comput. Appl. Math., 183, 53-66. 10.1016/j.cam.2005.01.001.

8.

9.

(2009). . J. Complexity, 25, 38-62. 10.1016/j.jco.2008.05.006.

10.

(1977). . Polish Acad. of Sciences, Banach Ctr. Publ., 3, 129-142.

11.

(2000). . J. Comput. Appl. Math., 115, 181-192. 10.1016/S0377-0427(99)00115-6.

12.

(2002). . Numer. Funct. Anal. Optimiz., 23, 791-805. 10.1081/NFA-120016270.

한국수학교육학회지시리즈B:순수및응용수학