바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ENTROPY RIGIDITY FOR METRIC SPACES

ENTROPY RIGIDITY FOR METRIC SPACES

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2012, v.19 no.1, pp.73-86
https://doi.org/10.7468/jksmeb.2012.19.1.73
Lim, Seon-Hee (Department of Mathematics, Seoul National University)

Abstract

This is a survey on the volume entropy and its rigidity of various metric spaces. This survey is aimed to summarize recent results as well as remaining open questions and possible directions on this subject.

keywords
volume entropy, rigidity, building, Hilbert geometry, topological entropy, geodesic flow

참고문헌

1.

(1995). Entropies et rigidites des espaces localement symetriques de courbure strictement negative. Geom. Funct. Anal., 5, 731-799. 10.1007/BF01897050.

2.

Volumes and entropies. Riemannian geometry (Waterloo, ON, 1993),Fields Inst. Monogr., 4.

3.

(2010). Volume entropy of Hilbert geometries. Pacific J. Math., 245(2), 201-225. 10.2140/pjm.2010.245.201.

4.

Convexes hyperboliques et fonctions quasisymetriques. (French. English summary) [Hyperbolic convex sets and quasisymmetric functions] Publ. Math. Inst. Hautes Etudes Sci. No. 97.

5.

(2009). Hilbert geometry of polytopes. Arch. Math. (Basel), 92(4), 314-324. 10.1007/s00013-009-3142-1.

6.

(2009). Geometries µa courbure negative ou nulle, groupes discrets et rigidites,Lecture notes from the Summer School held at the Institute Fourier, 2004 . Seminaires & Congres [Seminars and Congresses].

7.

(2001). Minimla entropy rigidity for Finsler manifolds of negative flag curvature. Ergod. Th. and Dynam. Sys., 21(1), 13-23.

8.

Quasi-conformal geometry and hyperbolic geometry. Rigidity in dynamics and geometry (Cambridge, 2000).

9.

(1997). Immeubles hyperboliques, dimension conforme et rigidite de Mostow. (French) [Hyperbolic buildings, conformal dimension and Mostow rigidity]. Geom. Funct. Anal., 7(2), 245-268. 10.1007/PL00001619.

10.

(2004). L'aire des triangles ideaux en geometrie de Hilbert (French) [The area of ideal triangles in Hilbert geometry]. Enseign. Math. (2), 50(3-4), 203-237.

11.

(2003). Minimal entropy rigidity for lattices in products of rank one symmetric spaces. Comm. Anal. Geom., 11(5), 1001-1026. 10.4310/CAG.2003.v11.n5.a7.

12.

(2003). Some recent applications of the barycenter method in geometry. Topology and Geometry of Manifolds (19-51). Proc. Symp. in Pure Math..

13.

(2009). On the growth of nonuniform lattices in pinched negatively curved manifolds. J. Reine Angew. Math., 627, 31-52.

14.

(1997). Uniform Finsler Hadamard manifolds. Ann. Inst. H. Poincare Phys. Theor., 66(3), 323-357.

15.

(2011). Counting closed geodesics in moduli space. J. Mod. Dyn., 5(1), 71-105. 10.3934/jmd.2011.5.71.

16.

(1990). Harmonic measures and BowenMargulis measures. Israel J. of Math., 71(3), 275-287. 10.1007/BF02773746.

17.

Problems on automorphism groups of nonpositively curved polyhedral complexes and their lattices;Geometry, Rigidity, and Group Actions.

18.

(1982). Entropy and closed geodesics. Ergod. Th. Dyn. Sys., 2, 339-365.

19.

(2007). The Patterson-Sullivan embedding and minimal volume entropy for outer space. Geom. Funct. Anal. (GAFA), 17(4), 1201-1236. 10.1007/s00039-007-0621-z.

20.

(2010). Volume entropy of hyperbolic buildings. J. Mod. Dyn., 4(1), 139-165. 10.3934/jmd.2010.4.139.

21.

(2010). An integral formula for the volume entropy with applications to rigidity. J. Differential Geom., 85(3), 461-477.

22.

(2004). Isoperimetric inequalities and random walks on quotients of graphs and buildings. Math. Z., 248(1), 101-112.

23.

(2006). Entropy of the geodesic flow for metric spaces and Bruhat-Tits buildings. Adv. Geom., 6(3), 475-491. 10.1515/ADVGEOM.2006.029.

24.

(2011). Lyapunov exponents, periodic orbits and horseshoes for mappings of Hilbert spaces. Ann. Henri Poincare, 12(6), 1081-1108. 10.1007/s00023-011-0100-9.

25.

(2008). Minimal volume entropy for graphs. Trans. Amer. Math. Soc., 360, 5089-5100. 10.1090/S0002-9947-08-04227-X.

26.

(2011). The length of closed geodesics on random Riemann surfaces. Geom. Dedicata, 151, 207-220. 10.1007/s10711-010-9528-1.

27.

Walks on Free groups and other stories, twelve years later.

28.

(1981). A relation between Lyapunov exponents, Hausdorff dimension and entropy. Ergodic Theory Dynamical Systems, 1(4), 451-459.

29.

(1979). Topological entropy for geodesic flows. Ann. of Math. (2), 110(3), 567-573. 10.2307/1971239.

30.

On Some Aspects of the Theory of Anosov Systems; With a survey by Richard Sharp: Periodic orbits of hyperbolic flows, Translated from the Russian by Valentina Vladimirovna Szulikowska, Springer Monographs in Mathematics.

31.

(2003). Ergodicite et equidistribution en courbure negative. Mem. Soc. Math. Fr. (N.S.), (95), vi+96.

32.

Lectures on Finsler geometry,xiv.

33.

(1982). Dimension, entropy and Lyapunov exponents. Ergodic Theory Dynamical Systems, 2(1), 109-124. 10.1017/S0143385700009615.

34.

Lipschitz characterization of convex polytopal Hilbert geometries.

35.

Transport networks revisited: why dual graphs.

한국수학교육학회지시리즈B:순수및응용수학