바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

PROPERTIES OF HYPERHOLOMORPHIC FUNCTIONS ON DUAL TERNARY NUMBERS

Properties of hyperholomorphic functions on dual ternary numbers

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2013, v.20 no.2, pp.129-136
https://doi.org/10.7468/jksmeb.2013.20.2.129
Jung, Hyun Sook (Department of Mathematics, College of Natural Sciences, Pusan National University)
Shon, Kwang Ho (Department of Mathematics, College of Natural Sciences, Pusan National University)

Abstract

We research properties of ternary numbers with values in <TEX>${\Lambda}(2)$</TEX>. Also, we represent dual ternary numbers in the sense of Clifford algebras of real six dimensional spaces. We give generation theorems in dual ternary number systems in view of Clifford analysis, and obtain Cauchy theorems with respect to dual ternary numbers.

keywords
hyperholomorphic function, ternary number, dual number system, Clifford analysis, complex differential equation

참고문헌

1.

(2008). Function spaces in complex and Clifford analysis, On some complete system of monogenic rational functions (156-169). Proc. 14h Inter. Conf. on Finite or Inf. Dimen. Complex Anal. Appl., Advances in Complex Anal. Appl..

2.

(1980). Complex and Quaternionic Analyticity in Chiral and Gauge Theories I. Ann. of Physics, 128, 29-130. 10.1016/0003-4916(80)90056-1.

3.

(2004). Regeneration in Complex, Quaternion and Clifford analysis (287-298). Proc. 9th Inter. Conf. on Finite or Inf. Dimen. Complex Anal. and Appl., Advances in Complex Anal. Appl..

4.

(2008). Function spaces in complex and Clifford analysis, Inhomogeneous Cauchy Riemann system of quaternion and Clifford analysis in ellipsoid (127-155). Proc. 14th Inter. Conf. on Finite or Inf. Dimen. Complex Anal. Appl., Advances in Complex Anal. Appl..

5.

(2006). Dual spilt quaternions and screw motion in Minkowski 3-space. Iranian J. Sci. Tech, Trans. A, 30, 245-258.

6.

(2012). PROPERTIES OF HYPERHOLOMORPHIC FUNCTIONS IN CLIFFORD ANALYSIS. East Asian mathematical journal, 28(5), 553-559. 10.7858/eamj.2012.040.

7.

(2013). Hyperholomorphic functions and hyper-conjugate harmonic functions of octonion variables. J. Inequal. Appl., 77, 1-8.

8.

(2013). Regularities of functions with values in C(n) of matrix algebras M(n;C). J. Inequal. Appl., .

9.

(1971). Hyperholomorphic functions. Siberian Math. J., 12, 959-968.

10.

(1983). Hyperholomorphic functions of a quaternion variable. Bull. Fukuoka Univ. Ed., 32, 21-37.

11.

(1985). On the Quaternion Linearization of Laplacian. Bull. Fukuoka Univ. Ed., 35, 5-10.

12.

(1986). Characterization of domains of holomorphy by the existence of hyper-conjugate harmonic functions. Rev. Roumaine Math. Pures Appl., 31(2), 159-161.

13.

(1982). Clifford analysis. Res. Notes in Math., 76, 1-43.

14.

(1987). Domains of Hyperholomorphic in <TEX>${\mathbb{C}}^2{\times}{\mathbb{C}}^2$</TEX>. Bull. Fukuoka Univ. Ed., 36, 1-9.

15.

(1979). Quaternionic analysis. Math. Proc. Camb. Phil. Soc., 85, 199-225. 10.1017/S0305004100055638.

16.

(1976). On (k)-monogenic functions of a quaternion variable. Res. Notes in Math., 8, 22-44.

17.

(1973). The quaternion calculus. Amer. Math. Monthly, 80, 995-1008. 10.2307/2318774.

한국수학교육학회지시리즈B:순수및응용수학