바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

TRIPLED FIXED POINT THEOREM FOR HYBRID PAIR OF MAPPINGS UNDER GENERALIZED NONLINEAR CONTRACTION

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2014, v.21 no.1, pp.23-38
https://doi.org/10.7468/jksmeb.2014.21.1.23
Deshpande, Bhavana
Sharma, Sushil
Handa, Amrish

Abstract

In this paper, we introduce the concept of w¡compatibility and weakly commutativity for hybrid pair of mappings <TEX>$F:X{\times}X{\times}X{\rightarrow}2^X$</TEX> and <TEX>$g:X{\rightarrow}X$</TEX> and establish a common tripled fixed point theorem under generalized nonlinear contraction. An example is also given to validate our result. We improve, extend and generalize various known results.

keywords
tripled fixed point, tripled coincidence point, generalized nonlinear contraction

Reference

1.

B. Deshpande & R. Pathak. (2012). Hybrid pairs of mappings with some weaker conditions in consideration of common fixed point on 2-metric spaces. Mathematica Moravica, 16(2), 1-12.

2.

I. Kubiaczyk & B. Deshpande. (2006). Coincidence point for non-compatible multivalued maps satisfying an implicit relation. Demonstratio Mathematica, XXXIX(4), 555-562.

3.

I. Kubiaczyk & B. Deshpande. (2006). A common fixed point theorem for multivalued map-pings through T-weak commutativity. Mathematica Moravica, 10, 55-60.

4.

I. Kubiaczyk & B. Deshpande. (2007). Common fixed point of multivalued mappings without continuity. Fasciculi Mathematici, 37(9), 19-26.

5.

I. Kubiaczyk & B. Deshpande. (2008). Non-compatibility, discontinuity in consideration of common fixed point of set and single valued maps. SEA Bull Math., 32, 467-474.

6.

V. Lakshmikantham & L. Ciric. (2009). Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Analysis: Theory, Method and Applications, 70(12), 4341-4349. 10.1016/j.na.2008.09.020.

7.

J.T. Markin. (1947). Continuous dependence of fixed point sets. Proceedings of the American Mathematical Society, 38, 545-547.

8.

S. Sharma & B. Deshpande. (2006). Compatible multivalued mappings satisfying an implicit relation. SEA Bull Math., 30, 535-540.

9.

S. Sharma & B. Deshpande. (2007). Fixed point theorems for set and single valued maps without continuity and compatibility. Demonstratio Mathematica, XL(3), 649-658.

10.

S. Sharma, B. Deshpande & R. Pathak. (2008). Common fixed point theorems for hybrid pairs of mappings with some weaker conditions. Fasciculi Mathematici, 39, 71-84.

11.

M. Abbas, H. Aydi & E. Karapinar. Tripled fixed point theorems for multivalued nonlinear contraction mappings in partially ordered metric spaces.

12.

M. Abbas, L. Ciric, B. Damjanovic & M.A. Khan. (2012). Coupled coincidence point and common fixed point theorems for hybrid pair of mappings. Fixed Point Theory Appl, . 10.1186/1687-1812-2012-4.

13.

S.M. Alsulami & A. Alotaibi. (2012). Tripled coincidence points for monotone operators in partially ordered metric spaces. International Mathematical Forum, 7(37), 1811-1824.

14.

H. Aydi, E. Karapinar & M. Postolache. (2012). Tripled coincidence point theorems for weak <TEX>${\varphi}$</TEX>-contractions in partially ordered metric spaces. Fixed Point Theory Appl., . 10.1186/1687-1812-2012-44.

15.

H. Aydi & E. Karapinar. (2012). Triple fixed points in ordered metric spaces. Bulletin of Mathematical Analysis and Applications, 4(1), 197-207.

16.

H. Aydi & E. Karapinar. (2012). New Meir-Keeler type tripled fixed point theorems on partially ordered metric spaces. Mathematical Problems in Engineering, , 17.

17.

H. Aydi, E. Karapinar & C. Vetro. (2012). Meir-Keeler type contractions for tripled fixed points. Acta Mathematica Scientia, 6, 2119-2130.

18.

V. Berinde & M. Borcut. (2011). Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. Theory, Methods and Applications, 74(15), 4889-4897. 10.1016/j.na.2011.03.032.

19.

V. Berinde & M. Borcut. (2012). Tripled coincidence theorems of contractive type mappings in partially ordered metric spaces. Applied Mathematics and Computation, 218(10), 5929-5936. 10.1016/j.amc.2011.11.049.

20.

T. G. Bhaskar & V. Lakshmikantham. (2006). Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal., 65(6), 1379-1393. 10.1016/j.na.2005.10.017.

21.

P. Charoensawan. (2012). Tripled fixed points theorems of <TEX>${\varphi}$</TEX>-contractive mixed monotone operators on partially ordered metric spaces. Applied Mathematical Sciences, 6(105), 5229-5239.

22.

B. Deshpande. (2007). Common fixed point for set and single valued functions without continuity and compatibility. Mathematica Moravica, 11, 27-38.

23.

B. Deshpande & R. Pathak. (2012). Fixed point theorems for noncompatible discontinuous hybrid pairs of mappings on 2-metric spaces. Demonstratio Mathematica, XLV(1), 143-154.

24.

H.S. Ding, L. Li & S. Radenovic. (2012). Coupled coincidence point theorems for general-ized nonlinear contraction in partially ordered metric spaces. Fixed Point Theory Appl., . 10.1186/1687-1812-2012-96.

25.

B. Deshpande & S. Chouhan. (2011). Common fixed point theorems for hybrid pairs of map-pings with some weaker conditions in 2-metric spaces. Fasciculi Mathematici, 46, 37-55.

26.

B. Deshpande & S. Chouhan. (2011). Fixed points for two hybrid pairs of mappings satisfying some weaker conditions on non-complete metric spaces. SEA Bull. of Math., 35, 851-858.

27.

B. Samet & C. Vetro. (2010). Coupled fixed point, F-invariant set and fixed point of N-order. Ann. Funct. Anal., 1, 46-56. 10.15352/afa/1399900586.

Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics