바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

FILTER SPACES AND BASICALLY DISCONNECTED COVERS

FILTER SPACES AND BASICALLY DISCONNECTED COVERS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2014, v.21 no.2, pp.113-120
https://doi.org/10.7468/jksmeb.2014.21.2.113
Jeon, Young Ju (Department of Mathematics Education, ChonBuk National University)
Kim, ChangIl (Department of Mathematics Education, Dankook University)

Abstract

In this paper, we first show that for any space X, there is a <TEX>${\sigma}$</TEX>-complete Boolean subalgebra of <TEX>$\mathcal{R}$</TEX>(X) and that the subspace {<TEX>${\alpha}{\mid}{\alpha}$</TEX> is a fixed <TEX>${\sigma}Z(X)^{\sharp}$</TEX>-ultrafilter} of the Stone-space <TEX>$S(Z({\Lambda}_X)^{\sharp})$</TEX> is the minimal basically disconnected cover of X. Using this, we will show that for any countably locally weakly Lindel<TEX>$\ddot{o}$</TEX>f space X, the set {<TEX>$M{\mid}M$</TEX> is a <TEX>${\sigma}$</TEX>-complete Boolean subalgebra of <TEX>$\mathcal{R}$</TEX>(X) containing <TEX>$Z(X)^{\sharp}$</TEX> and <TEX>$s_M^{-1}(X)$</TEX> is basically disconnected}, when partially ordered by inclusion, becomes a complete lattice.

keywords
basically disconnected cover, Stone-space, covering map

참고문헌

1.

Kim Chang-Il;. (2006). MINIMAL BASICALLY DISCONNECTED COVERS OF PRODUCT SPACES. Communications of the Korean Mathematical Society, 21(2), 347-353. 10.4134/CKMS.2006.21.2.347.

2.

J. Porter & R.G. Woods. Extensions and Absolutes of Hausdorff Spaces.

3.

M. Henriksen, J. Vermeer & R.G. Woods. (1987). Quasi-F-covers of Tychonoff spaces. Trans. Amer. Math. Soc., 303, 779-804.

4.

J. Adamek, H. Herrilich & G.E. Strecker. Abstract and concrete categories.

5.

L. Gillman & M. Jerison. Rings of continuous functions.

6.

M. Henriksen, J.Vermeer & R.G. Woods. (1989). Wallman covers of compact spaces. Dissertationes Mathematicae, 283, 5-31.

7.

S. Iliadis. (1963). Absolute of Hausdorff spaces. Sov. Math. Dokl., 4, 295-298.

8.

C.I. Kim. (1996). Minimal covers and filter spaces. Topol. and its Appl., 72, 31-37. 10.1016/0166-8641(96)00009-0.

9.

A.M. Gleason. (1958). Projective topological spaces. Illinois J. Math., 2.

10.

J. Vermeer. (1984). The smallest basically disconnected preimage of a space. Topol. Appl., 17, 217-232. 10.1016/0166-8641(84)90043-9.

한국수학교육학회지시리즈B:순수및응용수학