바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ON MATRIX POLYNOMIALS ASSOCIATED WITH HUMBERT POLYNOMIALS

ON MATRIX POLYNOMIALS ASSOCIATED WITH HUMBERT POLYNOMIALS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2014, v.21 no.3, pp.207-218
https://doi.org/10.7468/jksmeb.2014.21.3.207
Pathan, M.A. (Centre for Mathematical and statistical Sciences (CMSS), KFRI)
Bin-Saad, Maged G. (Department of Mathematics, Aden University)
Al-Sarahi, Fadhl (Department of Mathematics, Aden University)

Abstract

The principal object of this paper is to study a class of matrix polynomials associated with Humbert polynomials. These polynomials generalize the well known class of Gegenbauer, Legendre, Pincherl, Horadam, Horadam-Pethe and Kinney polynomials. We shall give some basic relations involving the Humbert matrix polynomials and then take up several generating functions, hypergeometric representations and expansions in series of matrix polynomials.

keywords
hypergeometric matrix function, Humbert matrix polynomials, generating matrix function, generating relations, Gegenbauer matrix polynomials

참고문헌

1.

R. Aktas. (2014). A Note on multivariable Humbert matrix Polynomials. Gazi University journal of science, 27(2), 747-754.

2.

R. Aktas. (2013). A New multivariable extension of Humbert matrix Polynomials (1128-1131). AIP Conference Proceedings.

3.

H.W. Gould. (1965). Inverse series relation and other expansions involving Humbert polynomials. Duke Math. J., 32, 697-711. 10.1215/S0012-7094-65-03275-8.

4.

R. Aktas, B. Cekim & R. Sahin. (2012). The matrix version of the multivariable Humbert matrix Polynomials. Miskolc Mathematical Notes, 13(2), 197-208.

5.

R.S. Batahan. (2006). A New extension of Hermite matrix Polynomials and its applications. LinearAlgebra Appl., 419, 82-92.

6.

G. Dattoli, B. Ermand & P.E. Riccl. (2004). Matrix Evolution equation and special functions. computer and mathematics with Appl., 48, 1611-1617. 10.1016/j.camwa.2004.03.007.

7.

A. Horadam. (1985). Polynomials associated with Gegenbauer Polynomials. Fibonacci Quart., 23, 295-399.

8.

A. Horadan & S. Pethe. (1981). Gegenbauer polynomials revisited. Fibonacci Quart., 19, 393-398.

9.

L. Jodar & E. Defez. (1998). On Some properties of Humbert's polynomials II. Facta Universityis (Nis) ser. Math., 6, 13-17.

10.

G.V. Milovanovic & G.B. Dordevic. (1991). A connection between laguerre"s and Hermite's matrix polynomials. Appl. Math. Lett., 11, 23-30.

11.

M.A. Pathan & M.A. Khan. on Polynomials associated with Humbents polynomials. publications DEL, Intitut Mathematique, Noavelle seris 62.

12.

E.D. Rainville. Special function.

13.

J. Sastre, E. Defez & L. Jodar. (2006). Laguerre matrix polynomials. series expansion: theory and computer applications. Mathematical and computer Modelling, 44, 1025-1043. 10.1016/j.mcm.2006.03.006.

14.

K.A. Sayyed, M.S. Metwally & R.S. Batahn. (2004). Gegenbauer matrix polynomials and second order Matrix Differential Equations. Div., Math., 12, 101-115.

15.

K.A. Sayyed, M.S. Metwally & R.S. Batahn. (2003). On generalized Hermite matrix polynomials. Electronic Journal of linear Algebra, 10, 272-279.

16.

N.B. Shrestha. (1977). Polynomial associated with Legendre polynomials. Nepali , Yath. Sci. Rep. Triv., 2(1), 1-7.

17.

S.K. Sinha. (1989). On a polynomial associated with Gegenbauer polynomial. Proc. Not. Acad. Sci. India, 54, 439-455.

18.

H.M. Srivastava & H.L. Manocha. A treatise on Generating functions.

한국수학교육학회지시리즈B:순수및응용수학