바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

DERIVATIONS WITH NILPOTENT VALUES ON Γ-RINGS

Derivations with Nilpotent Values on Γ-rings

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2014, v.21 no.4, pp.237-246
https://doi.org/10.7468/jksmeb.2014.21.4.237
Dey, Kalyan Kumar (Department of Mathematics, Rajshahi University)
Paul, Akhil Chandra (Department of Mathematics, Rajshahi University)
Davvaz, Bijan (Department of Mathematics, Yazd University)

Abstract

Let M be a prime <TEX>${\Gamma}$</TEX>-ring and let d be a derivation of M. If there exists a fixed integer n such that <TEX>$(d(x){\alpha})^nd(x)=0$</TEX> for all <TEX>$x{\in}M$</TEX> and <TEX>${\alpha}{\in}{\Gamma}$</TEX>, then we prove that d(x) = 0 for all <TEX>$x{\in}M$</TEX>. This result can be extended to semiprime <TEX>${\Gamma}$</TEX>-rings.

keywords
<tex> ${\Gamma}$</tex>-ring, prime <tex> ${\Gamma}$</tex>-ring, semiprime <tex> ${\Gamma}$</tex>-ring, derivation, nilpotent <tex> ${\Gamma}$</tex>-ring

참고문헌

1.

A. Ali, S. Ali & V. De Filippis. (2011). Nilpotent and invertible values in semiprime rings with generalized derivations. Aequationes Math., 82(1-2), 123-134. 10.1007/s00010-010-0061-y.

2.

W.E. Barnes. (1966). On the <TEX>${\Gamma}$</TEX>-rings of Nobusawa. Pacific J. Math., 8, 411-422.

3.

K.K. Dey, A.C. Paul & I.S. Rakhimov. (2012). Rakhimov: Generalized derivations in semiprime gamma <TEX>${\Gamma}$</TEX>-rings. Inter. J. Math. and Math. Sci., . 10.1155/2012/270132.

4.

A. Giambruno & I.N. Herstein. Derivations with nilpotent values. Rendicoti Del circolo Mathematico Di Parlemo. Series II, tomo XXX.

5.

A.K. Halder & A.C. Paul. (2013). Semiprime <TEX>${\Gamma}$</TEX>-rings with Jordan derivations. J. of Physical Sciences, 17, 111-115.

6.

I.N. Herstein. (1970). On the Lie structure of an associative ring. J. Algebra, 14, 561-571. 10.1016/0021-8693(70)90103-1.

7.

I.N. Herstein. (1978). A note on derivations. Canad. Math. Bull., 21(3), 369-370. 10.4153/CMB-1978-065-x.

8.

I.N. Herstein. (1979). A note on derivations II. Canad. Math. Bull., 22(4), 509-511. 10.4153/CMB-1979-066-2.

9.

Ozturk, Mehmet-Ali;Jun, Y.B.;. (2000). ON THE CENTROID OF THE PRIME GAMMA RINGS. Communications of the Korean Mathematical Society, 15(3), 469-479.

10.

N. Nabusawa. (1964). On a generalization of the ring theory. Osaka J. Math., 1, 65-75.

11.

A.C. Paul & M.S. Uddin. (2010). Lie and Jordan structure in simple <TEX>${\Gamma}$</TEX>-rings. J. Physical Sciences, 11, 77-86.

12.

A.C. Paul & M.S. Uddin. (2010). Lie structure in simple gamma rings. International Journal of Pure and Applied Sciences and Technology, 4(2), 63-70.

13.

M. Sapanci & A. Nakajima. (1997). Jordan derivations on completely prime gamma rings. Math. Japonica, 46(1), 47-51.

14.

M. Soyturk. (1994). The commutativity in prime gamma rings with derivation. Turkish J. Math., 18, 149-155.

15.

F. Wei. (2004). Generalized derivation with nilpotent values on semiprime rings. Acta Mathematica Sinica (English Series), 20(3), 453-462. 10.1007/s10114-004-0318-2.

한국수학교육학회지시리즈B:순수및응용수학