바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ISOGONAL AND ISOTOMIC CONJUGATES OF QUADRATIC RATIONAL Bézier CURVES

Isogonal and isotomic conjugates of quadratic rational Bezier curves

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.1, pp.25-34
https://doi.org/10.7468/jksmeb.2015.22.1.25
Yun, Chan Ran (Department of Mathematics Education, Chosun University)
Ahn, Young Joon (Department of Mathematics Education, Chosun University)

Abstract

In this paper we characterize the isogonal and isotomic conjugates of conic. Every conic can be expressed by a quadratic rational B<TEX>$\acute{e}$</TEX>zier curve having control polygon <TEX>$b_0b_1b_2$</TEX> with weight w > 0. We show that the isotomic conjugate of parabola and hyperbola with respect to <TEX>${\Delta}b_0b_1b_2$</TEX> is ellipse, and that the isotomic conjugate of ellipse with the weight <TEX>$w={\frac{1}{2}}$</TEX> is identical. We also find all cases of the isogonal conjugate of conic with respect to <TEX>${\Delta}b_0b_1b_2$</TEX>. Our characterizations are derived easily due to the expression of conic by the quadratic rational B<TEX>$\acute{e}$</TEX>ezier curve in standard form.

keywords
isogonal conjugate, isotomic conjugate, conic, quadratic rational B<tex> $\acute{e}$</tex>zier curve, ellipse, parabola, hyperbola

참고문헌

1.

Ahn, Y.J.;Kim, H.O.;. (1998). Curvatures of the quadratic rational B&#xE9;zier curves. Comp. Math. Appl., 36, 71-83.

2.

Akopyan, A.V.;. (2012). Conjugation of lines with respect to a triangle. J. Classical Geometry, 1, 23-31.

3.

Farin, G.;. Curves and Surfaces for CAGD.

4.

Goddijn, A.;van Lamoen, F.;. (2005). Triangle-Conic Porism (57-61). Forum Geom..

5.

Guinand, A.P.;. (1975). Graves triads in the geometry of the triangle. Journal of Geometry, 6, 131-142. 10.1007/BF01920045.

6.

Guinand, A.P.;. (2002). Conjugacies in the plane of a triangle. Aequationes Mathematicae, 63, 158-167. 10.1007/s00010-002-8014-8.

7.

Pamfilos, P.;. (2012). On tripolars and parabolas (287-300). Forum Geom..

8.

Sastry, K.R.S.;. (2004). Triangles with special isotomic conjugate pairs (73-80). Forum Geom..

9.

Yiu, P.;. (2001). Introduction to the Geometry of the Triangle . Florida Atlantic University Lecture Notes.

10.

Yun, C.R.;. Isogonal and isotomic conjugates of quadratic rational B&#xE9;zier curve. MS Thesis.

한국수학교육학회지시리즈B:순수및응용수학