바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

SPHERES IN THE SHILOV BOUNDARIES OF BOUNDED SYMMETRIC DOMAINS

SPHERES IN THE SHILOV BOUNDARIES OF BOUNDED SYMMETRIC DOMAINS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2015, v.22 no.1, pp.35-56
https://doi.org/10.7468/jksmeb.2015.22.1.35
Kim, Sung-Yeon (Department of Mathematics Education, Kangwon National University)

Abstract

In this paper, we classify all nonconstant smooth CR maps from a sphere <TEX>$S_{n,1}{\subset}\mathbb{C}^n$</TEX> with n > 3 to the Shilov boundary <TEX>$S_{p,q}{\subset}\mathbb{C}^{p{\times}q}$</TEX> of a bounded symmetric domain of Cartan type I under the condition that p - q < 3n - 4. We show that they are either linear maps up to automorphisms of <TEX>$S_{n,1}$</TEX> and <TEX>$S_{p,q}$</TEX> or D'Angelo maps. This is the first classification of CR maps into the Shilov boundary of bounded symmetric domains other than sphere that includes nonlinear maps.

keywords
bonded symmetric domains, Shilov boundary, CR embedding, totally geodesic embedding, Whitney map

참고문헌

1.

Huang, X.;Ji, S.;. (2001). Mapping Bn into B2n&#x2212;1. Invent. Math., 145(2), 219-250. 10.1007/s002220100140.

2.

Huang, X.;Ji, S.;Xu, D.;. (2006). A new gap phenomenon for proper holomorphic mappings from Bn into BN. Math. Res. Lett., 13(4), 515-529. 10.4310/MRL.2006.v13.n4.a2.

3.

Poincar&#xE9;, H.;. (1907). Les fonctions analytiques de deux variables et la representation conforme. Rend. Circ. Mat. Palermo, 23(2), 185-220. 10.1007/BF03013518.

4.

Kaup, W.;Zaitsev, D.;. (2000). On symmetric Cauchy-Riemann manifolds. Adv. Math., 149(2), 145-181. 10.1006/aima.1999.1863.

5.

Kim, S.;Zaitsev, D.;. (2013). Rigidity of CR maps between Shilov boundaries of bounded symmetric domains. Invent. Math., 193(2), 409-437. 10.1007/s00222-012-0430-3.

6.

Mok, N.;. Series in Pure Math.;Metric Rigidity Theorems on Hermitian Locally Symmetric Spaces.

7.

Seo, Aeryeong;. New examples of proper holomorphic maps between bounded symmetric domains.

8.

Tsai, I-H.;. (1993). Rigidity of proper holomorphic maps between symmetric domains. J. Differential Geom., 37(1), 123-160.

9.

Alexander, H.;. (1974). Holomorphic mappings from the ball and polydisc. Math. Ann., 209, 249-256. 10.1007/BF01351851.

10.

Chern, S.S;Moser, J.K.;. (1974). Real hypersurfaces in complex manifolds. Acta Math., 133, 219-271. 10.1007/BF02392146.

11.

Ebenfelt, P.;Huang, X.;Zaitsev, D.;. (2004). Rigidity of CR-immersions into spheres. Comm. in Analysis and Geometry, 12(3), 631-670. 10.4310/CAG.2004.v12.n3.a6.

12.

Forstneri&#x10D;, F.;. (1986). Proper holomorphic maps between balls. Duke Math. J., 53, 427-440. 10.1215/S0012-7094-86-05326-3.

13.

Huang, X.;. (2003). On a semi-rigidity property for holomorphic maps. Asian J. Math., 7(4), 463-492.

14.

Webster, S.M.;. (1979). The rigidity of C-R hypersurfaces in a sphere. Indiana Univ. Math. J., 28, 405-416. 10.1512/iumj.1979.28.28027.

15.

Faran V, J.J.;. (1986). On the linearity of proper maps between balls in the lower codimensional case. J. Differential Geom., 24, 15-17.

16.

Huang, X.;. (1999). On a linearity problem for proper holomorphic maps between balls in complex spaces of different dimensions. J. Differential Geom., 51, 13-33.

한국수학교육학회지시리즈B:순수및응용수학