바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

QUADRATIC ρ-FUNCTIONAL INEQUALITIES

Quadratic -functional inequalities

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2016, v.23 no.2, pp.145-153
https://doi.org/10.7468/jksmeb.2016.23.2.145
YUN, SUNGSIK (DEPARTMENT OF FINANCIAL MATHEMATICS, HANSHIN UNIVERSITY)
LEE, JUNG RYE (DEPARTMENT OF MATHEMATICS, DAEJIN UNIVERSITY)
SEO, JEONG PIL (OHSANG HIGH SCHOOL)

Abstract

In this paper, we solve the quadratic &#x3C1;-functional inequalities (0.1) <TEX>${\parallel}f(x+y)+f(x-y)-2f(x)-2f(y){\parallel}$</TEX> <TEX>$\leq$</TEX> <TEX>${\parallel}{\rho}(4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y)){\parallel}$</TEX>, where <TEX>$\rho$</TEX> is a fixed complex number with <TEX>$\left|{\rho}\right|$</TEX> < 1, and (0.2) <TEX>${\parallel}4f(\frac{x+y}{2})+f(x-y)-2f(x)-2f(y){\parallel}$</TEX> <TEX>$\leq$</TEX> <TEX>${\parallel}{\rho}(f(x+y)+f(x-y)-2f(x)-2f(y)){\parallel}$</TEX>, where &#x3C1; is a fixed complex number with |&#x3C1;| &#x3C; <TEX>$\frac{1}{2}$</TEX>. Furthermore, we prove the Hyers-Ulam stability of the quadratic &#x3C1;-functional inequalities (0.1) and (0.2) in complex Banach spaces.

keywords
Hyers-Ulam stability, quadratic ρ-functional inequality

참고문헌

1.

Park, C.;. (2012). Orthogonal stability of a cubic-quartic functional equation. J. Nonlinear Sci. Appl., 5, 28-36.

2.

Rassias, Th. M.;. (1978). On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72, 297-300. 10.1090/S0002-9939-1978-0507327-1.

3.

Ravi, K.;Thandapani, E.;Senthil Kumar, B.V.;. (2014). Solution and stability of a reciprocal type functional equation in several variables. J. Nonlinear Sci. Appl., 7, 18-27.

4.

Skof, F.;. (1983). Propriet locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano, 53, 113-129. 10.1007/BF02924890.

5.

Ulam, S.M.;. A Collection of the Mathematical Problems.

6.

Zaharia, C.;. (2013). On the probabilistic stability of the monomial functional equation. J. Nonlinear Sci. Appl., 6, 51-59.

7.

Hyers, D.H.;. (1941). On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A, 27, 222-224. 10.1073/pnas.27.4.222.

8.

Aoki, T.;. (1950). On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan, 2, 64-66. 10.2969/jmsj/00210064.

9.

Chahbi, A.;Bounader, N.;. (2013). On the generalized stability of d&#x2019;Alembert functional equation. J. Nonlinear Sci. Appl., 6, 198-204.

10.

Cholewa, P.W.;. (1984). Remarks on the stability of functional equations. Aequationes Math., 27, 76-86. 10.1007/BF02192660.

11.

Eskandani, G.Z.;G&#x1CE;vruta, P.;. (2012). Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces. J. Nonlinear Sci. Appl., 5, 459-465.

12.

G&#x1CE;vruta, P.;. (1994). A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl., 184, 431-436. 10.1006/jmaa.1994.1211.

한국수학교육학회지시리즈B:순수및응용수학