바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

SOME RETARDED INTEGRAL INEQUALITIES AND THEIR APPLICATIONS

SOME RETARDED INTEGRAL INEQUALITIES AND THEIR APPLICATIONS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2016, v.23 no.2, pp.181-199
https://doi.org/10.7468/jksmeb.2016.23.2.181
KIM, YOUNG JIN (DANG JIN MIDDLE SCHOOL)

Abstract

In this paper we obtain some retarded integral inequalities involving Stieltjes derivatives and we use our results in the study of various qualitative properties of a certain retarded impulsive differential equation.

keywords
retarded integral inequalities, Stieltjes derivatives, retarded impulsive differential equations

참고문헌

1.

Frănková, D.;. (1991). Regulated functions. Math. Bohem., 116, 20-59.

2.

Hönig, C.S.;. Volterra Stieltjes-integral equations. Mathematics Studies 16.

3.

Kim, Y.J.;. (2011). Stieltjes derivatives and its applications to integral inequalities of Stieltjes type. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math., 18(1), 63-78.

4.

Kim, Y.J.;. (2014). Stieltjes derivative method for integral inequalities with impulses. J. Korean Soc. Math. Educ.Ser. B: Pure Appl. Math., 21(1), 61-75.

5.

Pachpatte, B. G.;. (1998). Inequalities for differential and integral equations. Mathematics in Science and Engineering, 197.

6.

Pachpatte, B. G.;. Integral and finite difference inequalities and applications. Mathematics Studies 205.

7.

Rudin, W.;. Functional analysis.

8.

Samoilenko, A.M.;Perestyuk, N.A.;. Impulsive differential equations.

9.

Schaefer, H.;. (1955). Über die methode der a priori-Schranken. Math. Ann., 29, 415-416.

10.

Schwabik, Š.;. Generalized ordinary differential equations.

11.

Schwabik, Š.;Tvrdý, M.;Vejvoda, O.;. Differntial and integral equations: boundary value problems and adjoints.

12.

Tvrdý, M.;. (1989). Regulated functions and the Perron-Stieltjes integral. Časopis pešt. mat., 114(2), 187-209.

한국수학교육학회지시리즈B:순수및응용수학