Stability of -variable Additive and -variable Quadratic Functional Equations
Journal of the Korean Society of Mathematical Education Series B: Theoretical Mathematics and Pedagogical Mathematics / Journal of the Korean Society of Mathematical Education Series B: Theoretical Mathematics and Pedagogical Mathematics, (P)3059-0604; (E)3059-1309
2022, v.29 no.2, pp.179-188
https://doi.org/https://doi.org/10.7468/jksmeb.2022.29.2.179
Govindan, Vediyappan
Pinelas, Sandra
Lee, Jung Rye
Govindan,,
V.
, Pinelas,,
S.
, &
Lee,,
J.
R.
(2022). Stability of -variable Additive and -variable Quadratic Functional Equations. , 29(2), 179-188, https://doi.org/https://doi.org/10.7468/jksmeb.2022.29.2.179
Abstract
In this paper we investigate the Hyers-Ulam stability of the s-variable additive and l-variable quadratic functional equations of the form <TEX>f\(s∑i=1xi\)+s∑j=1f\(−sxj+s∑i=1,i≠jxi\)=0
</TEX> and <TEX>f\(l∑i=1xi\)+l∑j=1f\(−lxj+l∑i=1,i≠jxi\)=(l+1)
</TEX><TEX>$\sum\limits_{i=1,i{\neq}j}^{l}f(x_i-x_j)+(l+1)\sum\limits_{i=1}^{l}f(x_i)$</TEX> (s, l ∈ N, s, l ≥ 3) in quasi-Banach spaces.
- keywords
-
Hyers-Ulam stability,
additive and quadratic mapping,
quasi-Banach space,
p-Banach space