Stability of -variable Additive and -variable Quadratic Functional Equations
Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2022, v.29 no.2, pp.179-188
https://doi.org/https://doi.org/10.7468/jksmeb.2022.29.2.179
Govindan, Vediyappan
Pinelas, Sandra
Lee, Jung Rye
Govindan,,
V.
, Pinelas,,
S.
, &
Lee,,
J.
R.
(2022). Stability of -variable Additive and -variable Quadratic Functional Equations. Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, 29(2), 179-188, https://doi.org/https://doi.org/10.7468/jksmeb.2022.29.2.179
Abstract
In this paper we investigate the Hyers-Ulam stability of the s-variable additive and l-variable quadratic functional equations of the form <TEX>$$f\(\sum\limits_{i=1}^{s}x_i\)+\sum\limits_{j=1}^{s}f\(-sx_j+\sum\limits_{i=1,i{\neq}j}^{s}x_i\)=0$$</TEX> and <TEX>$$f\(\sum\limits_{i=1}^{l}x_i\)+\sum\limits_{j=1}^{l}f\(-lx_j+\sum\limits_{i=1,i{\neq}j}^{l}x_i\)=(l+1)$$</TEX><TEX>$\sum\limits_{i=1,i{\neq}j}^{l}f(x_i-x_j)+(l+1)\sum\limits_{i=1}^{l}f(x_i)$</TEX> (s, l ∈ N, s, l ≥ 3) in quasi-Banach spaces.
- keywords
-
Hyers-Ulam stability,
additive and quadratic mapping,
quasi-Banach space,
p-Banach space