바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN3059-0604
  • E-ISSN3059-1309
  • KCI

Stability of -­variable Additive and -­variable Quadratic Functional Equations

Journal of the Korean Society of Mathematical Education Series B: Theoretical Mathematics and Pedagogical Mathematics / Journal of the Korean Society of Mathematical Education Series B: Theoretical Mathematics and Pedagogical Mathematics, (P)3059-0604; (E)3059-1309
2022, v.29 no.2, pp.179-188
https://doi.org/https://doi.org/10.7468/jksmeb.2022.29.2.179
Govindan, Vediyappan
Pinelas, Sandra
Lee, Jung Rye

Abstract

In this paper we investigate the Hyers-Ulam stability of the s-variable additive and l-variable quadratic functional equations of the form <TEX>

f\(i=1sxi\)+j=1sf\(sxj+i=1,ijsxi\)=0
</TEX> and <TEX>
f\(i=1lxi\)+j=1lf\(lxj+i=1,ijlxi\)=(l+1)
</TEX><TEX>$\sum\limits_{i=1,i{\neq}j}^{l}f(x_i-x_j)+(l+1)\sum\limits_{i=1}^{l}f(x_i)$</TEX> (s, l &#x2208; N, s, l &#x2265; 3) in quasi-Banach spaces.

keywords
Hyers-Ulam stability, additive and quadratic mapping, quasi-Banach space, p-Banach space

Journal of the Korean Society of Mathematical Education Series B: Theoretical Mathematics and Pedagogical Mathematics