바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

STABILITY OF s-VARIABLE ADDITIVE AND l-VARIABLE QUADRATIC FUNCTIONAL EQUATIONS

Stability of -­variable Additive and -­variable Quadratic Functional Equations

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2022, v.29 no.2, pp.179-188
https://doi.org/https://doi.org/10.7468/jksmeb.2022.29.2.179
Govindan, Vediyappan (Department of Mathematics, DMI St John Baptist University)
Pinelas, Sandra (Departamento de Ciencias Exatas e Engenharia, Academia Militar)
Lee, Jung Rye (Department of Data Science, Daejin University)

Abstract

In this paper we investigate the Hyers-Ulam stability of the s-variable additive and l-variable quadratic functional equations of the form <TEX>$$f\(\sum\limits_{i=1}^{s}x_i\)+\sum\limits_{j=1}^{s}f\(-sx_j+\sum\limits_{i=1,i{\neq}j}^{s}x_i\)=0$$</TEX> and <TEX>$$f\(\sum\limits_{i=1}^{l}x_i\)+\sum\limits_{j=1}^{l}f\(-lx_j+\sum\limits_{i=1,i{\neq}j}^{l}x_i\)=(l+1)$$</TEX><TEX>$\sum\limits_{i=1,i{\neq}j}^{l}f(x_i-x_j)+(l+1)\sum\limits_{i=1}^{l}f(x_i)$</TEX> (s, l &#x2208; N, s, l &#x2265; 3) in quasi-Banach spaces.

keywords
Hyers-Ulam stability, additive and quadratic mapping, quasi-Banach space, p-Banach space

한국수학교육학회지시리즈B:순수및응용수학