바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-0657
  • E-ISSN2287-6081
  • KCI

ISOMORPHISMS OF CERTAIN TRIDIAGONAL ALGEBRAS

한국수학교육학회지시리즈B:순수및응용수학 / Journal of the Korean Society of Mathematical Education Series B: The Pure and Applied Mathematics, (P)1226-0657; (E)2287-6081
2000, v.7 no.1, pp.49-60
Choi, Taeg-Young (Department of Mathematics Education, Andong National University)
Kim, Si-Ju (Department of Mathematics Education, Andong National University)

Abstract

We will characterize isomorphisms from the adjoint of a certain tridiag-onal algebra <TEX>$AlgL_{2n}$</TEX> onto <TEX>$AlgL_{2n}$</TEX>. In this paper the following are proved: A map <TEX>$\Phi{\;}:{\;}(AlgL_{2n})^{*}{\;}{\longrightarrow}{\;}AlgL_{2n}$</TEX> is an isomorphism if and only if there exists an operator S in <TEX>$AlgL_{2n}$</TEX> with all diagonal entries are 1 and an invertible backward diagonal operator B such that <TEX>${\Phi}(A){\;}={\;}SBAB^{-1}S^{-1}$</TEX>.

keywords
tridiagonal algebra, isomorphism, spatially implemented

한국수학교육학회지시리즈B:순수및응용수학