ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

폭발물 오염토양에서 전기화학법을 이용한 RDX 흔적량의 분석

Analysis for explosives in contaminated soil using the electrochemical method

분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2008, v.21 no.2, pp.129-134
이수영 (서울과학기술대학교)
  • 다운로드 수
  • 조회수

초록

순환전압전류법과 벗김전압 전류법을 사용한 폭발물(hexahydro-1,3,5-trinitro-1,3,5-triazine, RDX)의 흔적량 분석을 위하여 double-stranded ds calf thymus (DNA)와 카본 나노튜브 혼합 전극을 사용하였으며. 최적 분석 조건을 시험한 결과 0.2 V vs. Ag/AgCl 전위에서 봉우리 전류를 발견하였다, 이 전위를 사용하여 선형분석 농도 범위: 50-75 ug/의 순환전압전류법과, 5-80 ng/L의 벗김 전압 전류법에 도달하였으며, 10 ug/L의 농도에서15번 반복 측정한 상대 표준편차는 0.086% 이었다. 또한 300초의 벗김 분석 조건에서 0.65 ng/L (<TEX>$2.92{\times}10^{-12}M$</TEX>) (S/N

keywords
voltammetry, DNA, carbon nanotube, RDX

Abstract

Cyclic voltammetry (CV) and square wave stripping voltammetry (SW) analysis of hexahydro-1,3,5- trinitro-1,3,5-triazine (RDX) using the double-stranded ds calf thymus (DNA) mixed in carbon nanotube paste electrode (PE) were provided. The optimum analytical conditions were determined and the peak potential was 0.2 V vs. Ag/AgCl. The linear working ranges of CV (50-75 ug/L) and SW (5-80 ng/L) were obtained. The precisions of RSD in the 10 ug/L was 0.086% (n=15) and the detection limit was 0.65 ng/L (2.92×10−12 M) (S/N=3) with 300 s adsorption time at the optimum condition. The method was used to determine the presence of explosive chemicals in contaminated soil samples.

keywords
voltammetry, DNA, carbon nanotube, RDX


참고문헌

1

1. H. Abdelkader, H. T. John and Luong, A. L. Nguyen, J Chromatography A, 844, 97-110(1999).

2

2. R. L. Marple and R. L. William, Talanta 66, 581-590(2005).

3

3. Y. L Suw, H. K Duck and H. K. Myung, Talanta 58,919-926(2002).

4

4. P. Xiaoping, Z. Baohong and P. C. George, Talanta 67,816-823(2005).

5

5. B. Gudrun and P. Heike, Propellants Explosives, Pyrotechnics 24, 149-155(1999).

6

6. M. G. Tiffanee, T. C. Paul and P. A. George, Anal Biochem 310, 36-41(2002).

7

7. E. W. Marianne, Talanta 54, 427-438(2001).

8

8. G. Vourvopoul and P. C. W, Talanta 54, 459-468(2001).

9

9. W. Joseph, L. Fang, M. Douglas, L. Jianmin, E. S. O Mehmet and R. R. Kim, Talanta 46, 1405-1412(1998).

10

10. M. M Laura, S. T. Pete and H. H. Herbert, Talanta 54,171-179(2001).

11

11. J. B. William, F. Melvin, V. William, M. D. Willaim,R.C. Ernesto, and Stafford C., W. A. Jane, Anal Chem Acta 341, 63-71(1997).

12

12. W. Wisitsree, S. Mithran and S. Werasak, Anal. Chem,76, 859-862(2004).

13

13. W. Rong, O. Takeyoshi, K. Fusao, M. Naoki, T. Thies,M. Shuntaro and O. Takeo, J. Phys. Chem. B, 107,9452-9458(2003).

14

14. N. G. Rajendra, K. G. Vinod and O. Munetaka, Electrochem Commun 7. 803-807(2005).

15

15. K. Marzanna and K. M. Agnieszka, J Pharmaceut Biomed 34, 95-102(2004).

16

16. J. Frantisek, T. Miroslav and P. Emil, J Electroanal Chem 423, 141-148(1997).

17

17. C. Manuel, S. Alberto, B. Esperanza, Z. Antonio, D. R.Maria and A. R. Gustavo, Anal Chim Acta 543, 84-91(2005).

18

18. L. Yijun, N. Naoshi and O. Yoshihiro, Comp Mater Sci 34, 173-187(2005).

19

19. V. Federica, O. Silvia, L.T. Maria, A. Aziz and P.Giuseppe, Sensor Actuat B-chem 100, 117-125(2004).

20

20. K. Pavel, H. Ludek, P. Hana and F. Miroslav, Bioelectrochemistry 63, 245-248(2004).

상단으로 이동

분석과학