Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Square wave voltammetric behaviors and determinations of ranitidineㆍHCl in the pharmaceutical tablets

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2009, v.22 no.5, pp.432-438


  • Downloaded
  • Viewed

Abstract

In order to develop the analytical method for the pharmaceutical tablets containing ranitidineㆍHCl by square wave voltammetry (SWV), 5.00×10⁻⁵ M ranitidineㆍHCl solutions prepared with phosphate buffers of various pH values were investigated by SWV. The well defined main peak due to the electrochemical reduction of -NO2 in the structure of ranitidine moved towards the cathodic direction by -70 ㎷/pH as the pH values were increased indicating the involvement of hydrogen in its reduction. The calibration curve, the plot of peak currents (Ip) vs. concentrations of ranitidineㆍHCl in the range between 1.00×10⁻⁷ M and 1.00×10⁻⁵ M showed linearity with slopes of 232,530 ㎂/M (pH 6.14), 289,015 ㎂/M (pH 7.07) and 232,843 ㎂/M (pH 8.01). When one pharmaceutical tablet was simply dissolved in the phosphate buffer with a pH value of 6.14 and determined by standard addition method using SWV, the within-day precision study (n=4) resulted in the contents of ranitidineㆍHCl as 171±2.1 ㎎ (102±1.3% of the specified contents, RSD of 1.2%) in a tablet of Curan<SUP>®</SUP>. The inter-day precision for 5 days was 1.1% of RSD. For Zantac<SUP>®</SUP> the within-day precision study (n=4) showed the contents of ranitidineㆍHCl as 167±0.8 ㎎ (99±0.5% of the specified contents, RSD of 0.5%) in a tablet and the inter-day precision for 5 days was 0.3% of RSD.

keywords
ranitidineHCl, square wave voltammetry, electrochemical reduction of <TEX>$-NO_2$</TEX>


Reference

1

1. Revision of Committee, “The United States Pharmacopoeia”, 24th Ed., 1462-1466, The United States Pharmacopoeial Convention, Inc., Washington, D. C., U.S.A. (2005).

2

2. D. Zendelovska and T. Stafilov, J. Pharma. Biomed. Anal., 33, 165-173(2003).

3

3. L. G. Hare, D. S. Mitchel, J. S. Millership, P. S. Collier, J. C. McElnay, M. D. Shields, D. J. Carson and R. Fair, J. Chromatogr. B, 806, 263-269(2004).

4

4. D. A. I. Ashiru, R. Patel and A. W. Basit, J. Chromatogr. B, 860, 235-240(2007).

5

5. A. Khedr, J. chromatogr. B, 862, 175-180(2008).

6

6. P. Norouzi, M. R. Ganjali and P. Daneshgar, J. Pharmacol. Toxicolo. Methods, 55, 289-296(2007).

7

7. Y. Gao, Y. Tian, X. Sun, X. B. Yin, Q. Xiang, G. Ma and E. Wang, J. chromatogr. B, 832, 236-240(2006).

8

8. M. D. Zammarren´o, J. H. Meˇndez and A. S. Peˇrez, Anal. Chim. Acta, 176, 279-284(1985).

9

9. P. Richter, M. I. Toral and F. Munˇoz-Vargas, Analyst, 119, 1371-1374(1994).

10

10. J. A. Squella, L. A. Zuiga, I. Lemus and L. J. Nunˇez- Vergara, J. Assoc. Off. Anal. Chem., 71, 388-390(1988).

11

11. Y. Hahn and J.-S. Jeon, J. Kor. Chem. Soc., 36, 552- 557(1992).

12

12. M. S. Kim and Y. Hahn, Arch. Pharm. Res., 30, 255- 259(2007).

13

13. D. C. Harris, “Quantitative Chemical Analysis”, 7th Ed., 86, Freeman, U.S.A., 2007.

상단으로 이동

Analytical Science and Technology