Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Spectrofluorimetric determination of EDTA with Cu(II)-tiron chelate

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2011, v.24 no.3, pp.231-235
https://doi.org/10.5806/AST.2011.24.3.231

  • Downloaded
  • Viewed

Abstract

A spectrofluorimetric method for the determination of EDTA in real samples such as mayonnaise,powder detergent and cleansing cream with tiron (4,5-dihydroxy-1,3-benzenedisulfonic acid) as a fluorimetric reporter was developed. When tiron is chelated with Cu(II), the fluorescent intensity is decreased by a quenching effect. However, when Cu(II)-tiron chelate reacts with EDTA, fluorescent intensity is increased as tiron is released. Several experimental conditions such as pH of the sample solution, the amount of Cu(II), the amount of tiron, heating temperature and heating time were optimized. Fe(III) interfered more seriously than any other ions, interference of Fe(III) could be disregarded, because Fe(III) was scarcely contained in selected real samples. The linear range of EDTA was from 8.0×10^(−8) M to 2.0×10^(−6) M. With this proposed method, the detection limit of Fe(III) was 5.2×10^(−8) M. Recovery yields of 92.7~99.3% were obtained. Based on experimental results, it is proposed that this technique can be applied to the practical determination of EDTA.

keywords
EDTA determination, tiron, Cu(II), spectrofluorimetry


Reference

1

1. L. Katata, V. Nagaraju and A. M. Crouch, Anal. Chim. Acta, 579, 177-184 (2006).

2

2. A. A. Krokidis, M. C. Megoulas and M. A. Koupparis, Anal. Chim. Acta, 535, 57-63 (2005).

3

3. R. Parkash, R. Bansal, S. K. Rehani and S. Dixit, Talanta, 46, 1573-1576 (1998).

4

4. A. M. G. Campaa, F. A. Barrero and M. R. Ceba, Anal. Chim. Acta, 329, 319-325 (1996).

5

5. J. B. Quintana and T. Reemtsma, J. Chromatogr. A, 1145, 110-117 (2007).

6

6. H. Lee, T. E. Peart and K. L. E. Kaiser, J. Chromatogr, A, 738, 91-99 (1996).

7

7. C. E. Cagnasso, L. B. Lopez, V. G. Todriguez and M. E. Valencia, J. Food. Compos. Anal., 20, 248-251 (2007).

8

8. K. Gl, M. Hugl, S. Demirci-eki and R. Apak, Talanta, 53, 213-222 (2000).

9

9. F. Belal, F. A. Aly, M. I. Walash and A. O. Mesbah, J. Pharm. Biomed. Anal., 17, 1249-1256 (1998).

10

10. M. Grabarezyk, Electrochim. Acta, 51, 2333-2337(2006).

11

11. C. Zhao, Y. Pan, Y. Su, Z. Zhang, Z. Guo and L. Sun, Water Res., 37, 4270-4274 (2003).

12

12. H. Kim and H. Choi, Talanta, 55, 163-169 (2001).

13

13. J. A. Dean, “Lange's Handbook of Chemistry”, 15th Ed., 8.93 McGraw-Hill, U.S.A., 1999.

14

14. T. I. Tikhomirova, S. S. Kubyshev, A. V. Ivanov and P. N. Nesterenko, Russ. J. Phys. Chem. A, 83, 1208-1211 (2009).

15

15. D. C. Harris, “Quantitative Chemical Analysis”, 7th Ed., 60, W. H. Freeman, U.S.A., 2007.

상단으로 이동

Analytical Science and Technology