- P-ISSN 1225-0163
- E-ISSN 2288-8985
제주도 고산지역에서 라돈(222Rn)을 실시간 모니터링하여 대기 중의 배경농도 수준을 확인하였다. 고산지역의 라돈 농도는 평균 2831 mBq/m3 (0.077 pCi/L)로 우리나라 실내 평균농도보다는 19.5배 낮은 배경농도 수준을 나타내었다. 계절별로는 봄, 여름, 가을, 겨울에 각각 2657, 2071, 3249, 3384 mBq/m3 농도를 보여 겨울에 높고 여름에 낮은 것으로 조사되었다. 월별로는 10월에 가장 높고 7월에 가장 낮은 농도를 나타내었다. 일간 농도는 오전 7시에 하루 중 가장 높은 농도를 보였고, 오후 2~3시경에 가장낮은 농도를 나타내는 것으로 확인되었다. 역궤적 분석 결과, 라돈 농도는 기류의 유입경로에 따라 차이를 보였고, 아시아대륙으로부터 제주도로 이동했을 때 농도가 높고 북태평양으로부터 기류가 유입될 때훨씬 더 낮은 농도를 나타내었다.
The real-time monitoring of radon (222Rn) concentrations has been carried out to evaluate the background concentration level of atmospheric radon in Gosan site, Jeju Island. The mean concentration of radon for the recent 10 years was 2831 mBq/m3 (0.077 pCi/L), which was 19.5 time lower than that of indoor radon in Korea. The seasonal concentrations were 2657, 2071, 3249, 3384 mBq/m3 respectively for spring,summer, fall, and winter seasons. In monthly comparison, the radon concentrations were high in October and low in July. The hourly concentrations have increased during the nighttime, showing 3666 mBq/m3 at 7 a.m.,and decreased relatively during the daytime, showing 2755 mBq/m3 at 2~3 p.m. From the back trajectory analysis, the radon concentrations showed higher values when the air mass was moved from the Asia continent to Jeju area, on the other hand, it showed low values when it was moved from the North Pacific Ocean.
1. S. Whittlestone and W. Zahorowski, J. Geophys. Res., 103(D13), 16,743-16,751 (1998).
2. National Institute of Environmental Research, Investigation for Nationwide Actual Indoor Radon: Research Report of Public Facilities, (2009. 10).
3. Ministry of Environment, Comprehensive Countermeasures for Indoor Radon Control(2007~2012); Safe Maintenance of Indoor Environment from Radon, (2007. 8).
4. US EPA, Assessment of radon risk in home (EPA 402-R-03-003) (2003).
5. H. K. Je, J. Mineral and Energy Res., 47(3), 400-405 (2010).
6. Radon Information Center, What is Radon?/Radon Investigation (www.radon.or.kr).
7. W. Zahorowski, S. D. Chambers and A. Henderson-Sellers, J. Env. Radioact., 76(1-2), 3-33 (2004).
8. W. Zahorowski, S. Chambers, T. Wang, C. H. Kang, I. Uno, S. Poon, S.N. Oh, S. Werczynski, J. Y. Kim and A. Henderson-Sellers, Tellus B, 57(2), 124-140 (2005).
9. Y. Igarashi, Y. Sawa, K. Yoshioka, H. Matsueda, K. Fujii and Y. Dokiya, J. Geophys. Res., 109(D17304), 21pp (2004).
10. S. Biraud, P. Ciais, M. Ramonet, P. Simmonds, V. Kazan, P. Monfray, S. O'Doherty, T. G. Spain and S. G. Jennings, J. Geophys. Res., 105(D1), 1351-1366 (2000).
11. S. R. Wilson, A. L. Dick, P. J. Fraser and S. Whittlestone J. Atmos. Chem., 26(2), 169-188 (1997).
12. S. Hirao, H. Yamazawa and J. Moriizumi, J. Env. Radioact., 101(11), 974-984 (2010).
13. Y. S. Kim, C. M. Lee, K. Y. Kim, H. J. Jeon, J. C. Kim, and T. Iida, Kor. J. Env. Hlth., 33(4), 283-292 (2007).
14. Y. S. Kim, C. M. Lee, H. T. Kim, H. S. Lee and T. S. Park, Environmental and Occupational Medicine, 9(1), 49-53 (2000).
15. NOAA, Air Resources Laboratory, HYSPLIT4 (HYbrid Single-Particle Lagrangian Integrated Trajectory) model, 2009 Silver Spring(2009) (http://www.arl.noaa.gov/HYSPLIT_info.php).
16. H. J. Ko, C. H. Kang, W. H. Kim, S. B. Lee and H. S. Kang, Korean J. Atmos. Env., 26(4), 420-431 (2010).