• P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Comparison of peptide guanidination efficiency using various reaction conditions

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2012, v.25 no.2, pp.114-120
https://doi.org/10.5806/AST.2012.25.2.114

(KAIST)


  • Downloaded
  • Viewed

Abstract

For the qualitative analysis of peptides in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS), O-methylisourea, which is chemically bound to a specific site of an amino acid (e.g. lysine)of peptides and improves the intensities of the modified peptides, is frequently used prior to the MALDI-MS analysis of peptides, where the process is called guanidination. The reaction efficiency of guanidination varies depending on the reaction conditions. We investigated the efficiencies of guanidination of tryptically digested myoglobin using three different reagents (O-methylisourea, S-methylisothiourea, and 2-methyl-2-imidazoline)at 65oC for 1 h with various pH conditions (pH 4.0, 7.0, and 10.5), where O-methylisourea and pH 10.5were found to be most effective. The guanidination with O-methylisourea at pH 10.5 were then applied with different reaction conditions such as heating, microwave and ultrasound at various times, where heating for 60 min was found to be most effective. Conclusively, guanidination with O-methylisourea at 65oC for 1 h at pH 10.5 was found to be the optimized condition.

keywords
O-methylisourea, S-methylisourea, 2-methyl-2-imidazoline, guanidination, mass spectrometry, MALDI-MS


Reference

1

1. J. R. Yates, 3rd, J. Mass Spectrom., 33, 1-19 (1998).

2

2. Q. Luo, K. Tang, F. Yang, A. Elias, Y. Shen, R. J. Moore, R. Zhao, K. K. Hixson, S. S. Rossie and R. D. Smith, J. Proteome Res., 5, 1091-1097 (2006).

3

3. H. Han, S. Nho, A. Lee and J. Kim, B. Korean Chem. Soc., 31, 1527-1534 (2010).

4

4. A. Lee, H. J. Yang, Y. Kim and J. Kim, B. Korean Chem. Soc., 30, 1127-1130 (2009).

5

5. A. Lee, H. J. Yang, E. S. Lim, J. Kim and Y. Kim, Rapid Commun. Mass Spectrom., 22, 2561-2564 (2008).

6

6. S. Laugesen and P. Roepstorff, J. Am. Soc. Mass. Spectrom, 14, 992-1002 (2003).

7

7. A. Tholey and E. Heinzle, Anal. Bioanal. Chem., 386, 24-37 (2006).

8

8. R. L. Beardsley and J. P. Reilly, Anal. Chem., 74, 1884-1890 (2002).

9

9. J. E. Hale, J. P. Butler, M. D. Knierman and G. W. Becker, Anal. Biochem., 287, 110-117 (2000).

10

10. C. O. Kappe, Angew. Chem. Int. Ed. Engl., 43, 6250-6284 (2004).

11

11. M. Galesio, D. V. Vieira, R. Rial-Otero, C. Lodeiro, I. Moura and J. L. Capelo, J. Proteome Res., 7, 2097-2106 (2008).

12

12. H. F. Juan, S. C. Chang, H. C. Huang and S. T. Chen, Proteomics, 5, 840-842 (2005).

13

13. S. Shin, H. J. Yang, J. Kim and J. Kim, Anal. Biochem., 414, 125-130 (2011).

14

14. F. L. Brancia, S. G. Oliver and S. J. Gaskell, Rapid Commun. Mass Spectrom, 14, 2070-2073 (2000).

상단으로 이동

Analytical Science and Technology