- P-ISSN 1225-0163
- E-ISSN 2288-8985
펩타이드의 정성 분석에서, O-Methylisourea는 펩타이드의 특정 아미노산(예. 라이신)에 화합결합하여 해당 펩타이드의 신호를 증진시키기 때문에 펩타이드를 matrix-assisted laser desorption/ionizationmass spectrometry (MALDI-MS) 분석하기 위해 흔히 사용되는데, 이러한 과정은 guanidination이라고 불린다. Guanidination은 반응 조건에 따라 효율이 변하게 된다. 본 연구에서는 트립신으로 가수분해된 미오글로빈 단백질을 세 가지 다른 반응시약 (O-methylisourea, S-methylisothiourea, 2-methyl-2-imidazoline)을 사용하여 65 oC 에서 1 시간 동안 다양한 pH 조건 (pH 4.0, 7.0 및 10.5)에서 guanidination 반응을 수행하였는데, 실험 결과 O-methylisourea와 pH 10.5이 가장 좋은 효율을 나타내었다. 다음으로 Omethylisourea 와 pH 10.5의 반응 조건을 이용하여 열, 마이크로파, 초음파 등과 같은 다양한 조건에서 시간을 변화시켜 가면서 guanidination을 연구하였는데, 열을 이용하여 60 분 동안 반응시키는 것이 가장 효과적이었다. 결론적으로 O-methylisourea을 이용하여 pH 10.5 용액에서 열을 이용하여 1 시간 동안 65 oC 에서 가열하는 것이 guanidination을 위한 최적의 조건이었다.
For the qualitative analysis of peptides in matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS), O-methylisourea, which is chemically bound to a specific site of an amino acid (e.g. lysine)of peptides and improves the intensities of the modified peptides, is frequently used prior to the MALDI-MS analysis of peptides, where the process is called guanidination. The reaction efficiency of guanidination varies depending on the reaction conditions. We investigated the efficiencies of guanidination of tryptically digested myoglobin using three different reagents (O-methylisourea, S-methylisothiourea, and 2-methyl-2-imidazoline)at 65oC for 1 h with various pH conditions (pH 4.0, 7.0, and 10.5), where O-methylisourea and pH 10.5were found to be most effective. The guanidination with O-methylisourea at pH 10.5 were then applied with different reaction conditions such as heating, microwave and ultrasound at various times, where heating for 60 min was found to be most effective. Conclusively, guanidination with O-methylisourea at 65oC for 1 h at pH 10.5 was found to be the optimized condition.
1. J. R. Yates, 3rd, J. Mass Spectrom., 33, 1-19 (1998).
2. Q. Luo, K. Tang, F. Yang, A. Elias, Y. Shen, R. J. Moore, R. Zhao, K. K. Hixson, S. S. Rossie and R. D. Smith, J. Proteome Res., 5, 1091-1097 (2006).
3. H. Han, S. Nho, A. Lee and J. Kim, B. Korean Chem. Soc., 31, 1527-1534 (2010).
4. A. Lee, H. J. Yang, Y. Kim and J. Kim, B. Korean Chem. Soc., 30, 1127-1130 (2009).
5. A. Lee, H. J. Yang, E. S. Lim, J. Kim and Y. Kim, Rapid Commun. Mass Spectrom., 22, 2561-2564 (2008).
6. S. Laugesen and P. Roepstorff, J. Am. Soc. Mass. Spectrom, 14, 992-1002 (2003).
7. A. Tholey and E. Heinzle, Anal. Bioanal. Chem., 386, 24-37 (2006).
8. R. L. Beardsley and J. P. Reilly, Anal. Chem., 74, 1884-1890 (2002).
9. J. E. Hale, J. P. Butler, M. D. Knierman and G. W. Becker, Anal. Biochem., 287, 110-117 (2000).
10. C. O. Kappe, Angew. Chem. Int. Ed. Engl., 43, 6250-6284 (2004).
11. M. Galesio, D. V. Vieira, R. Rial-Otero, C. Lodeiro, I. Moura and J. L. Capelo, J. Proteome Res., 7, 2097-2106 (2008).
12. H. F. Juan, S. C. Chang, H. C. Huang and S. T. Chen, Proteomics, 5, 840-842 (2005).
13. S. Shin, H. J. Yang, J. Kim and J. Kim, Anal. Biochem., 414, 125-130 (2011).
14. F. L. Brancia, S. G. Oliver and S. J. Gaskell, Rapid Commun. Mass Spectrom, 14, 2070-2073 (2000).