- P-ISSN 1225-0163
- E-ISSN 2288-8985
Analytical signal from ICP was compensated by the light scattering of sample aerosols. Reference scattering signal was generated by a He-Ne or diode laser, monitored for the amount of aerosol producing and used for the compensation of analytical signals. The result showed that significant improvement in precision could be achieved for the short-term signal (within 1 minute) from 3.4% to 0.9% RSD in signal and 14.9%to 4.2% for the long-term (10 minutes) for Be, Pb and Co. This method is very useful not only for the pulse type but for continuous type signals especially when a nebulizer is unstable. To improve long-term precision,higher stability is required in the scattering cell and detector as well as the reduction of noise from the line between a nebulizer and plasma.
1. V. Hans, M. Luc and D. J. Richard, J. Anal. At. Spectrom., 9, 815-921 (1994).
2. S. H. Nam, J. S. Lim and A. Montaser, J. Anal. At. Spectrom., 9, 1357-1364 (1994).
3. S. Greenfield and A. Montaser, ‘Inductively Coupled Plasma in Analytical Atoomic Spectrometry’, 2nd Ed., ch4, 187, A. Montaser, D. W. Golightly, ed., VCH, New York, 1992.
4. R. F. Browner, ‘Inductively Coupled Plasma Emission Spectroscopy’, Part, ch8, 244, P. W. J. M. Boumans, ed., John Wiley, New York, 1987.
5. E. Parades, J. Bosque, J. Mermet and J. Todoli, Spectrochim Acta B, 65, 908-917 (2011).
6. H. Cheng, X. Yin, X. Wang and H. Shen, Talanta, 85, 794-799 (2011).
7. A. Tyburska, K. Jankowski, A. Ramsza, E. Reszke, M. Strzelec and A. Andrzejc, J. Anal. At. Spectrom., 25, 210-214 (2010).
8. M. Hoenig, H. Docekalov´a and H. Baeten, J. Anal. At. Spectrom., 13, 195-199 (1998).
9. D. H. Sun, K. W. James and P. M. Thomas, J. Anal. At. Spectrom., 12, 1675-1683 (1997).
10. B. Budic, J. Anal. At. Spectrom., 13, 869-878 (1998).
11. G. J. Schmidt and W. Slavin, Anal. Chem., 54(14), 2491-2495 (1982).
12. F. J. Feldman, Anal. Chem., 42, 719-725 (1970).
13. H. Uchida, Y. Norjiri, H. Haraguchi and K. Fuwa, Anal. Chim. Acta, 123, 57-69 (1981).
14. C. Vogiatzis and G. Zachariadis J. Anal. At. Spectrom., 26, 2030-2038 (2011).
15. G. Horlick, Spectrochim Acta B, 37(12), 1037-1046 (1982).
16. F. Fryer, J. Lear, D. Bishop, D. Hare, T. Rawling, L. Kirkup, A. McDonagh and P. Doble, J. Anal. At. Spectrom., 26, 1494-1501 (2011).
17. S. A. Myers and D. H. Tracy, Spectrochim. Acta B, 38, 1227-1234 (1983).
18. J. Marshall, G. Rodgers and W. C. Campbell, J. Anal. At. Spectrom., 13, 241-244 (1988).
19. N. Furuta, Anal Sci., 18, 1105-1113 (2002).
20. H. Pang, D. R. Wiederin, R. S. Houk and E. S. Yeung, Anal. Chem., 63, 390-397 (1991).
21. R. J. Watling, J. Anal. At. Spectrom., 13, 927-934 (1998).
22. T. Tomokazu, Y. Kensuke, N. Tsutomu and K. Hiroshi, Anal. Sci., 11, 967-977 (1995).
23. S. A. Baker, B. W. Smith and J. D. Winefordner, Appl. Spectrosc., 52, 154-161 (1998).
24. P. Yeon, Y. Cho and Y. Pak, Bull. Kor. Chem. Soc., 20, 1277-1284 (1999).
25. L. Qinghong and M. B. Ramon, J. Microchemical., 54, 129-143 (1996).
26. G. H. Vickers, D. A. Wilson and G. M. Hieftje, J. Anal. At. Spectrom., 4, 749-755 (1989).
27. J. Takahashi and R. Hara, Anal. Sci., 4, 331-339 (1988).
28. A. R. Date and A. L. Gray, ‘The Application of Inductively Coupled Plasma Mass Spectrometry’ Ed., 224, Champan & Hall, London, 1988.
29. P. D. Goulden and D. H. Anthony, J. Anal. Chem., 56, 2327-2334 (1984).
30. T. Tanaka, K. Yamamoto, T. Nomizu and H. Kawaguchi, Anal. Sci., 11, 967-977 (1995).