Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Analysis of the composition of trail pheromone secreted from live Camponotus japonicus by HS-SPME GC/MS (HeadSpace-Solid Phase MicroExtraction Gas Chromatography/Mass Spectrometry)

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2012, v.25 no.5, pp.292-299
https://doi.org/10.5806/AST.2012.25.5.292




  • Downloaded
  • Viewed

Abstract

GC/MS has been utilized for many applications due to great resolution and reproducibility, which made it possible to build up the database of mass spectrum, while HS-SPME has the advantage of solventfree extraction of volatile compounds. The combination of these two methods, HS-SPME GC/MS, enabled many scientific applications with various possibilities. In this study, the analysis of trail pheromone excreted from live Camponotus japonicus with the feature of solvent-free extraction was carried out and the optimization for this analysis was performed. The major compounds detected were n-decane, n-undecane, and n-tridecane. Optimization for the best detection of these hydrocarbons was processed in the point of SPME parameter (selection of fiber, extraction temperature, extraction time, etc.). The advantage of the analysis of live sample is to analyze phenomenon right after it is excreted by ants. But the experimental process has restriction of extraction temperature and time because of the analysis of live ants. Establishing the process of HS-SPME GC/MS applied to live samples shown in this study can be a breakthrough for the ecofriendly and ethical research of live things

keywords
HS-SPME GC/MS, volatile organic compound, trail pheromone, live Camponotus japonicus


Reference

1

1. J. Lisec, N. Schauer, J. Kopka, L. Willmitzer and A. R. Fernie, Nat. Protocols, 1(1), 387-396 (2006).

2

2. A. Kende, D. Portwood, A. Senior, M. Earll, E. Bolygo and M. Seymour, J. Chromatogr A, 1217(43), 6718-6723 (2010).

3

3. J. H. Kim, Anal. Sci. Technol, 24(2), 119-126 (2011).

4

4. M. S. Yu, S. B. Yang and N.-K. Ha, J. Envir. Sci., 19(12), 1447-1454 (2010).

5

5. M. N. Kayali-Sayadi, J. M. Bautista, D. Polo, amp, x, L. M. Ez and I. Salazar, J. Chromatogr B, 796(1), 55-62 (2003).

6

6. W. Miekisch, P. Fuchs, S. Kamysek, C. Neumann and J. K. Schubert, Clin. Chim. Acta, 395(1-2), 32-37 (2008).

7

7. A. Mallouchos, M. Komaitis, A. Koutinas and M. Kanellaki, J. Agr. Food Chem., 50(13), 3840-3848 (2002).

8

8. K. Fiedler, E. Schtz and S. Geh, Int. J. Hyg. Envir. Heal, 204(2-3), 111-121 (2001).

9

9. C. A. Zini, F. Augusto, E. Christensen, E. B. Caramo and J. Pawliszyn, J. Agr. Food Chem, 50(25), 7199-7205 (2002).

10

10. B. D. Jackson and E. D. Morgan, Chemoecology, 4(3), 125-144 (1993).

11

11. Z. Liu, S. Yamane, Q. Wang and H. Yamamoto, J Ethol., 16(2), 57-65 (1998).

12

12. N. Fujiwara-Tsujii, N. Yamagata, T. Takeda, M. Mizunami and R. Yamaoka, Zool Sci., 23(4), 353-358 (2006).

13

13. U. Haak, B. Hlldobler, H. J. Bestmann and F. Kern, Chemoecology, 7(2), 85-93 (1996).

14

14. T. H. Jones, D. A. Clark, A. A. Edwards, D. W. Davidson, T. F. Spande and R. R. Snelling, J. Chem. Ecol., 30(8), 1479-1492 (2004).

15

15. G. Janssens, Anal. Chim. Acta, 95(2), 153-159 (1977).

16

16. R. B. Josens, W. M. Farina and F. Roces, J. Insect. Physiol., 44(7-8), 579-585 (1998).

상단으로 이동

Analytical Science and Technology