- P-ISSN 1225-0163
- E-ISSN 2288-8985
밀도함수 이론을 이용하여 메틸나이트로이미다졸 유도체의 생성열, 밀도 등의 화학적 특성치들을 예측하고 분석하였다. 이미다졸 링에 나이트로기를 계속적으로 치환하면 생성열과 밀도값은 증가한다. 예측된 화학적 특성치들을 이용하여 치타 프로그램으로 화약적 성능을 분석하고, 현재 널리 사용되는 TNT, RDX, HMX 등과 비교하였다. C-J 압력과 폭발 속도 등을 사용하여 화약 성능을 분석하면 메틸다이나이트로 유도체들은 TNT 보다는 성능이 약간 우수하며, 메틸트라이나이트로이미다졸은 RDX에거의 버금가는 수준이다. 메틸나이트로이미다졸계 화약들은 용융점이 낮아 용융 충전이 가능하다는 장점이 있으므로 군수나 민수 등 다양한 방면이 사용이 가능할 것으로 예측된다.
Chemical properties such as heat of formation and density of methylnitroimidazole derivatives were predicted and analyzed by using density functional theory (DFT). Successive addition of energetic nitro groups into an imidazole ring increases both the heat of formation and the density. Using the chemical property values computed by DFT, explosive performance was analyzed with the Cheetah program, and compared with those of TNT, RDX, and HMX, which are currently used widely in military systems. When both C-J pressure and detonation velocity were used as explosive performance, methyldinitroimidazole derivatives show better performance than TNT, while methyltrinitroimidzole is almost close to RDX. Since methylnitroimidazole derivatives have a good merit, i.e. low melting point for melt loading, they are forecasted to be used widely in various military and civilian application.
1. P. W. Cooper, ‘Explosives Engineering’, VCH, New York, 1996.
2. J. Akhavan, ‘The Chemistry of Explosives’, 2nd Ed., The Royal Society of Chemistry, Cambridge, UK, 2004.
3. T. M. Klapötke, In ‘High Energy Density Materials’, T.M. Klapötke, Ed., pp. 85-121, Springer-Verlag: Berlin, Germany, 2007.
4. S. G. Cho, Bull. Korean Chem. Soc., 32, 2319-2324 (2011).
5. L. Xiaohong, Z. Ruizhou and Z. Xianzhou, J. Hazard. Mater., 183, 622-631(2010).
6. H. Gao and J. M. Shreeve, Chem. Rev., 111, 7377-7436 (2011).
7. S. G. Cho, ‘A Systematic Procedure to Predict Explosive Performance and Sensitivity of Novel High- Energy Molecules in ADD, ADD Method-1’ In ‘Handbook of Material Science Research’, p431, C. René, E. Turcotte, Eds., Nova Science Publishers, New York, 2010.
8. M. J. Frisch et al., Gaussian 03, Revision D.02, Gaussian, Inc., Wallinford, CT, 2004.
9. D. Habibollahzadeh, M. E. Grice, M. C. Concha, J. S. Murray and P. Politzer, J. Comput. Chem., 5, 654-658 (1995).
10. J. S. Murray, T. Brinck and Politzer, Chem. Phys., 204, 289-299 (1996).
11. S. C. Cho and E. M. Goh, ‘A Study on Generating a Database and Derving an Efficient Method to Predict Heats of Formation of High-Energy Molecules’, Agency for Defense Development Report TEDC-519-021438, 2002.
12. C. K. Kim, K. A Lee, K. H. Hyun, H. J. Park, I. Y. Kwack, C. K. Kim, H. W. Lee and B. S. Lee, J. Comput. Chem., 25, 2073-2079 (2004).
13. C. K. Kim, S. G. Cho, K. A Lee, C. K. Kim, H.-Y. Park, H. Zhang, H. W. Lee and B. S. Lee, J. Comput. Chem., 29, 1818-1824 (2008).
14. L. E. Fried, W. M. Howard and P. C. Souers, ‘Cheetah 2.0 User Manual’, Lawrence Livermore National Laboratory Report UCRL MA 117541 Rev. 5, 1998.
15. X. Su, X. Cheng, C. Meng and X. Yuan, J. Hazard. Mater., 161, 551-558 (2009).
16. P. Ravi, G. M. Gore, S. P. Tewari and A. K. Skider, J. Energ. Mat., 29, 209-227 (2011).