Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Quantitative determination of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)- furanone (MX) in chlorinated drinking water using sample enrichment followed by liquid-liquid extraction and GC-MS

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2016, v.29 no.1, pp.29-34
    https://doi.org/10.5806/AST.2016.29.1.29


    • Downloaded
    • Viewed

    Abstract

    This study explores the means by which MX can be effectively extracted from chlorinated water 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), a potent mutagen commonly found in chlorinated drinking water at concentrations of up to a few hundred ng/L, was quantitatively determined using sample enrichment followed by liquid-liquid extraction (LLE), derivatization to methylated form, and analysis with GC-MS. A 4-L water sample was enriched to a concentration of 0.4 L using a vacuum rotary evaporator at 30 oC. MX in the water was extracted using ethyl acetate (100 mL × 2) as a solvent and MX in the extract was methylated with 10% H2SO4 in methanol. MX was recovered at a rate of 73.8 %, which was higher than that (38.1 %) for the resin adsorption method. The limit of quantification and repeatability (as relative standard deviation) were estimated to be 10 ng/L and 2.2%, respectively. This result suggested that LLE can be used for the determination of MX in chlorinated water as an alternative to more time-consuming resin adsorption method.

    keywords
    chlorinated drinking water, GC-MS, liquid-liquid extraction, MX, sample enrichment


    Reference

    1

    1. S. D. Richardson and C. Postigo, Chapter 4, In ‘Emerging Organic Contaminants and Human Health - The Handbook of Environmental Chemistry 20’, Vol. 20, p. 93, D. Barceló, Ed., Springer-Verlag Berlin Heidelberg, Germany, 2012.

    2

    2. J. R. Meier, R. B. Knohl, W. E. Coleman, H. P. Ringhand, J. W. Munch, W. H. Kaylor, R. P. Streicher and F. Kopfler, Mut. Res., 189, 363-373 (1987).

    3

    3. A. Smeds, T. Vartiainen, J. Mki-Paakanen and L. Kronberg, Environ. Sci. Technol., 31, 1033-1039 (1997).

    4

    4. L. Kronberg and R. F. Christman, Sci. Total Environ., 81/82, 219-230 (1989).

    5

    5. L. Kronberg and T. Vartiainen, Mut. Res., 206, 177-182(1988).

    6

    6. D. P. Samsonov, E. M. Pasynkova and G. V. Bornovalova, J. Anal. Chem., 57, 513-517 (2002).

    7

    7. J. M Wright, J. Schwartz, T. Vartiainen, J. Mki-Paakkanen, L. Altshul, J. J. Harrington and D. W. Dockery, Environ. Health Perspect., 110, 157-164 (2002).

    8

    8. S. W. Krasner, H. S. Weinberg, S. D. Richardson, S. J. Pastor, R. Chinn, M. J. Sclimenti, G. D. Onstand and A. D. Thurston Jr., Environ. Health Perspect., 40, 7175-7185 (2006).

    9

    9. N. Kinae, C. Sugiyama, M. Y. Nasuda, K. Goto, K. Tokumoto, M. Furugori and K. Shimoi, Water Sci. Technol., 25, 333-340 (1992).

    10

    10. Z. Huixian, X. Xu, Z. Jinqi and Z. Zhen, Chemosphere, 30, 2219-2225 (1995).

    11

    11. E.-A. Yoo and J. Won, Anal. Sci. Technol., 19, 290-300(2006).

    12

    12. T. Vartiainen, A. Liimatainen, S. Jskelinen and P. Kauranen, Water Res., 7, 773-779 (1987).

    13

    13. M. J. Charles, G. Chen, R. Kanniganti and D. Marbury, Environ. Sci. Technol., 26, 1030-1035 (1992).

    14

    14. A. L. Rezemini, J. M. Vaz and L. R. F. Carvalho, J. Chromatogr. A, 972, 259-267 (2002).

    15

    15. G. D. Onstad and H. S. Weinberg, Anal. Chim. Acta, 534, 281-292 (2005).

    16

    16. C. Planas, F. Ventura, J. Caixach, J. Martn and R. Boleda, Talanta, 144, 145-156 (2015).

    17

    17. J. Hemming, B. Holmbom, M. Reunanen and L. Kronberg, Chemosphere, 15, 549-556 (1986).

    18

    18. J. Nawrocki, P. Andrzejewski, L. Kronberg and H. Jelen, J. Chromatogr. A, 790, 242-250 (1997).

    19

    19. J. Nawrocki, P. Andrzejewski, L. H. Jele and E. Wasowicz, Water Res., 35, 1891-1896 (2001).

    상단으로 이동

    Analytical Science and Technology