- P-ISSN 1225-0163
- E-ISSN 2288-8985
염소로 소독된 음용수에서 수백 ng/L의 농도까지 검출되는 3-chloro-4-(dichloromethyl)-5-hydroxy- 2(5H)-furanone(MX)를 시료 농축 후 액-액 추출(LLE), 메틸 유도체화 및 GC-MS로 정량 분석하였다. 4 L의 물 시료를 감압회전증발기를 사용해 30 oC에서 0.4 L로 농축하였다. 물 중의 MX는 ethyl acetate (100 mL × 2)를 용매로 사용하여 추출하였으며, 추출액 중 MX는 10 % H2SO4 in methanol로 methyl 유도체를 만들었다. MX의 회수율은 73.8%이었으며, 이는 수지 흡착법의 38.1%보다 높았다. 정량한계와반복성(RSD)은 각각 10 ng/L와 2.2%로 추정되었다. 이 결과는 시간이 더 많이 소요되는 수지 흡착법의대체 방법으로 LLE가 사용될 수 있다는 것을 보여 주었다.
This study explores the means by which MX can be effectively extracted from chlorinated water 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), a potent mutagen commonly found in chlorinated drinking water at concentrations of up to a few hundred ng/L, was quantitatively determined using sample enrichment followed by liquid-liquid extraction (LLE), derivatization to methylated form, and analysis with GC-MS. A 4-L water sample was enriched to a concentration of 0.4 L using a vacuum rotary evaporator at 30 oC. MX in the water was extracted using ethyl acetate (100 mL × 2) as a solvent and MX in the extract was methylated with 10% H2SO4 in methanol. MX was recovered at a rate of 73.8 %, which was higher than that (38.1 %) for the resin adsorption method. The limit of quantification and repeatability (as relative standard deviation) were estimated to be 10 ng/L and 2.2%, respectively. This result suggested that LLE can be used for the determination of MX in chlorinated water as an alternative to more time-consuming resin adsorption method.
1. S. D. Richardson and C. Postigo, Chapter 4, In ‘Emerging Organic Contaminants and Human Health - The Handbook of Environmental Chemistry 20’, Vol. 20, p. 93, D. Barceló, Ed., Springer-Verlag Berlin Heidelberg, Germany, 2012.
2. J. R. Meier, R. B. Knohl, W. E. Coleman, H. P. Ringhand, J. W. Munch, W. H. Kaylor, R. P. Streicher and F. Kopfler, Mut. Res., 189, 363-373 (1987).
3. A. Smeds, T. Vartiainen, J. Mki-Paakanen and L. Kronberg, Environ. Sci. Technol., 31, 1033-1039 (1997).
4. L. Kronberg and R. F. Christman, Sci. Total Environ., 81/82, 219-230 (1989).
5. L. Kronberg and T. Vartiainen, Mut. Res., 206, 177-182(1988).
6. D. P. Samsonov, E. M. Pasynkova and G. V. Bornovalova, J. Anal. Chem., 57, 513-517 (2002).
7. J. M Wright, J. Schwartz, T. Vartiainen, J. Mki-Paakkanen, L. Altshul, J. J. Harrington and D. W. Dockery, Environ. Health Perspect., 110, 157-164 (2002).
8. S. W. Krasner, H. S. Weinberg, S. D. Richardson, S. J. Pastor, R. Chinn, M. J. Sclimenti, G. D. Onstand and A. D. Thurston Jr., Environ. Health Perspect., 40, 7175-7185 (2006).
9. N. Kinae, C. Sugiyama, M. Y. Nasuda, K. Goto, K. Tokumoto, M. Furugori and K. Shimoi, Water Sci. Technol., 25, 333-340 (1992).
10. Z. Huixian, X. Xu, Z. Jinqi and Z. Zhen, Chemosphere, 30, 2219-2225 (1995).
11. E.-A. Yoo and J. Won, Anal. Sci. Technol., 19, 290-300(2006).
12. T. Vartiainen, A. Liimatainen, S. Jskelinen and P. Kauranen, Water Res., 7, 773-779 (1987).
13. M. J. Charles, G. Chen, R. Kanniganti and D. Marbury, Environ. Sci. Technol., 26, 1030-1035 (1992).
14. A. L. Rezemini, J. M. Vaz and L. R. F. Carvalho, J. Chromatogr. A, 972, 259-267 (2002).
15. G. D. Onstad and H. S. Weinberg, Anal. Chim. Acta, 534, 281-292 (2005).
16. C. Planas, F. Ventura, J. Caixach, J. Martn and R. Boleda, Talanta, 144, 145-156 (2015).
17. J. Hemming, B. Holmbom, M. Reunanen and L. Kronberg, Chemosphere, 15, 549-556 (1986).
18. J. Nawrocki, P. Andrzejewski, L. Kronberg and H. Jelen, J. Chromatogr. A, 790, 242-250 (1997).
19. J. Nawrocki, P. Andrzejewski, L. H. Jele and E. Wasowicz, Water Res., 35, 1891-1896 (2001).