Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Effect of functional group on activity and stability of lipase immobilized on silica-coated magnetite nanoparticles with different functional group

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2016, v.29 no.3, pp.105-113
    https://doi.org/10.5806/AST.2016.29.3.105








    • Downloaded
    • Viewed

    Abstract

    The present study investigated the immobilization of lipases on silica nanoparticles and silica-coated magnetite nanoparticles as supports with a functional group to enhance the stability of lipase. The influence of functional groups, such as the epoxy group and the amine group, on the activity and stability of immobilized lipase was also studied. The epoxy group and the amino group were introduced onto the surface of nanoparticles by glycidyl methacrylate and aminopropyl triethoxysilane, respectively. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles with a functional group showed slightly lower initial enzyme activities than free enzyme; however, the immobilized Candida rugosa lipase retained over 92 % of the initial activity, even after 3 times reuse. Lipase was also immobilized on the silica-coated magnetite nanoparticles by cross-linked enzyme aggregate (CLEA) using glutaraldehyde and covalent binding, respectively, were also studied. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles by CLEA and covalent binding showed higher enzyme activities than free enzyme, while immobilized Candida rugosa lipase retained over 73 % of the initial activity after 5 times reuse.

    keywords
    nanoparticle, silica-coated magnetite nanoparticles, lipase, immobilization, activity, stability


    Reference

    1

    1. D. Napierska, L. C. Thomassen, D. Lison, J. A. Martens and P. H. Hoet, Part Fibre Toxicol., 7(1), 39-71(2010).

    2

    2. R. K. Iler, ‘The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica’, Wiley, New York, 1979.

    3

    3. W. Stber, A. Fink and E. Bohn, J. Colloid Interface Sci., 26(1), 62-69 (1968).

    4

    4. Y.-H. Lee, J.-O. Lee and K.-S. Chun, Anal. Sci. Technol., 23(6), 579-586 (2010).

    5

    5. M. N. V. Ravi Kumar, M. Sameti, S. S. Mohapatra, X. Kong, R. F. Lockey, U. Bakowsky, G. Lindenblatt, H. Schmidt and C. M. Lehr, J. Nanosci. Nanotechnol., 4(7), 876-881 (2004).

    6

    6. I. I. Slowing, J. L. Vivero-Escoto, C. W. Wu and V. S. Lin, Adv. Drug Deliv. Rev., 60(11), 1278-1288 (2008).

    7

    7. M. I. Kim, H. O. Ham, S. D. Oh, H. G. Park, H. N. Chan and S. H. Choi, J. Mol. Catal. B: Enzym., 39(1-4), 62-68 (2006).

    8

    8. O. Salata, J. Nanobiotechnology, 2, 3-8 (2004).

    9

    9. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst and R. N. Muller, Chem. Rev., 108(6), 2064-2110(2008).

    10

    10. C. Sun, J. S. Lee and M. Zhang, Adv. Drug Delivery Rev., 60(11), 1252-1265 (2008).

    11

    11. P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie and Z. F. Liu, Sci. Total Environ., 424, 1-10 (2012).

    12

    12. A. K. Johnson, A. M. Zawadzka, L. A. Deobald, R. L. Crawford and A. J. Paszczynski, J. Nanopart. Res., 10(6), 1009-1025 (2008).

    13

    13. Y. Sahoo, H. Pizem, T. Fried, D. Golodnitsky, L. Burstein, C. N. Sukenik and G. Markovich, Langmuir, 17(25), 7907-7911 (2001).

    14

    14. H. Lee, E. Lee, D. K. Kim, N. K. Jang, Y. Y. Jeong and S. Jon, J. Am. Chem. Soc., 128 (22), 7383-7389 (2006).

    15

    15. H.-L. Liu, S. P. Ko, J.-H. Wu, M.-H. Jung, J. H. Min, J. H. Lee, B. H. An and Y. K. Kim, J. Magn. Magn. Mater., 310(2), 815-817 (2007).

    16

    16. Y. Lee, J. Lee, C. J. Bae, J.-G. Park, H. -J. Noh, J. -H. Park and T. Hyeon, Adv. Funct. Mater., 15(3), 503-509(2005).

    17

    17. J. W. Lee, Y. J. Lee, H. B. Na, T. Y. Yu, H. Kim, S. M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. S. Hwang, J. G. Park, J. B. Kim and T. H. Hyeon, Small, 4(1), 143-152 (2008).

    18

    18. P. Villeneuve, J. M. Muderhwa, J. Graille and M. J. Haas, J. Mol. Catal. B: Enzym., 9(4-6), 113-148 (2000).

    19

    19. S. H. Ha, M. N. Lan, S. H. Lee, S. M. Hwang and Y.-M. Koo, Enzym. Microb. Technol., 41(4), 480-483 (2007).

    20

    20. S. H. Ha, M. N. Lan and Y.-M. Koo, Enzym. Microb. Technol., 47(1-2), 6-10 (2010).

    21

    21. S. H. Ha, S. H. Lee, D. T. Dang, M. S. Kwon, W.-J. Chang, Y. J. Yu, I. S. Byun and Y.-M. Koo, Korean J. Chem. Eng., 25(2), 291-294 (2008).

    22

    22. W. Tischer and F. Wedekind, Top. Curr. Chem., 200, 95-126 (1999).

    23

    23. J. M. Guisan, ‘Immobilization of Enzymes and Cells’, 2nd Ed., Humana Press, New Jersey, 2006.

    24

    24. M. I. Kim, J. B. Kim, J. W. Kim, S. J. Shin, H. B. Na, T. H. Hyeon, H. G. Park and H. N. Chang, Micropor. Mesopor. Mater., 111(1-3), 18-23 (2008).

    25

    25. M. I. Kim, J. B. Kim, J. W, Lee, H. Jia, H. B. Na, J. K. Youn, J. H. Kwak and A. Dohnalkova, Biotechnol. Bioeng., 96(2), 210-218 (2007).

    26

    26. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. Biol. Chem. 193, 265-275 (1951).

    27

    27. D. T. Dang, S. H. Ha, S.-M. Lee, W. -J. Chang and Y.-M. Koo, J. Mol. Catal. B: Enzym., 45(3-4), 118-121(2007).

    상단으로 이동

    Analytical Science and Technology