ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

논문 상세

    실리카 코팅된 자성 나노입자로의 효소 고정화에 사용된 작용기가 리파아제의 활성과 안정성에 미치는 영향

    Effect of functional group on activity and stability of lipase immobilized on silica-coated magnetite nanoparticles with different functional group

    분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2016, v.29 no.3, pp.105-113
    https://doi.org/10.5806/AST.2016.29.3.105
    이혜린 (한남대학교 화공신소재공학과)
    김문일 (가천대학교)
    홍상은 (한남대학교)
    최재영 (한남대학교)
    김영민 (한남대학교)
    윤국로 (한남대학교 화학과)
    이승호 (한남대학교)
    하성호 (한남대학교)
    • 다운로드 수
    • 조회수

    초록

    고정화 지지체로 사용된 실리카 나노입자와 실리카 코팅된 자성 나노입자에 작용기를 부착시켜기능성을 부가한 후 효소인 리파아제를 고정화하여 리파아제의 안정성을 향상시키고자 연구를 수행하였다. 지지체에 부착하는 작용기가 고정화된 효소의 활성과 안정성에 미치는 영향도 살펴보았다. 실리카 나노입자와 실리카 코팅된 자성 나노입자에 부착한 작용기인 epoxy group과 amine group은 glycidyl methacrylate과 aminopropyl triethoxysilane을 통해 실리카 나노입자와 실리카 코팅된 자성 나노입자 표면에 각각 부착하였다. 작용기가 부착된 실리카 나노입자와 실리카 코팅된 자성 나노입자에 고정화한Candida rugosa lipase는 자유효소에 비해 초기반응속도는 다소 낮았지만, 3회 재사용한 후 측정한 활성이 최초 활성 대비 92 % 이상의 활성을 유지하였다. 또한, 실리카 코팅된 자성 나노입자에 glutaraldehyde 를 이용한 cross-linked enzyme aggregate (CLEA) 방법과 공유결합법을 통해 라파아제를 각각 고정화한연구를 수행한 결과, 실리카 나노입자와 실리카 코팅된 자성 나노입자에 CLEA 방법과 공유결합법으로각각 고정화한 Candida rugosa lipase는 자유효소에 비해 초기반응속도 뿐만 아니라 최종 활성도 높았고, 5회 재사용한 후 측정한 활성이 최초 활성 대비 73 % 이상의 활성을 유지하였다.

    keywords
    nanoparticle, silica-coated magnetite nanoparticles, lipase, immobilization, activity, stability

    Abstract

    The present study investigated the immobilization of lipases on silica nanoparticles and silica-coated magnetite nanoparticles as supports with a functional group to enhance the stability of lipase. The influence of functional groups, such as the epoxy group and the amine group, on the activity and stability of immobilized lipase was also studied. The epoxy group and the amino group were introduced onto the surface of nanoparticles by glycidyl methacrylate and aminopropyl triethoxysilane, respectively. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles with a functional group showed slightly lower initial enzyme activities than free enzyme; however, the immobilized Candida rugosa lipase retained over 92 % of the initial activity, even after 3 times reuse. Lipase was also immobilized on the silica-coated magnetite nanoparticles by cross-linked enzyme aggregate (CLEA) using glutaraldehyde and covalent binding, respectively, were also studied. Immobilized Candida rugosa lipase on silica nanoparticles and silica-coated magnetite nanoparticles by CLEA and covalent binding showed higher enzyme activities than free enzyme, while immobilized Candida rugosa lipase retained over 73 % of the initial activity after 5 times reuse.

    keywords
    nanoparticle, silica-coated magnetite nanoparticles, lipase, immobilization, activity, stability


    참고문헌

    1

    1. D. Napierska, L. C. Thomassen, D. Lison, J. A. Martens and P. H. Hoet, Part Fibre Toxicol., 7(1), 39-71(2010).

    2

    2. R. K. Iler, ‘The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica’, Wiley, New York, 1979.

    3

    3. W. Stber, A. Fink and E. Bohn, J. Colloid Interface Sci., 26(1), 62-69 (1968).

    4

    4. Y.-H. Lee, J.-O. Lee and K.-S. Chun, Anal. Sci. Technol., 23(6), 579-586 (2010).

    5

    5. M. N. V. Ravi Kumar, M. Sameti, S. S. Mohapatra, X. Kong, R. F. Lockey, U. Bakowsky, G. Lindenblatt, H. Schmidt and C. M. Lehr, J. Nanosci. Nanotechnol., 4(7), 876-881 (2004).

    6

    6. I. I. Slowing, J. L. Vivero-Escoto, C. W. Wu and V. S. Lin, Adv. Drug Deliv. Rev., 60(11), 1278-1288 (2008).

    7

    7. M. I. Kim, H. O. Ham, S. D. Oh, H. G. Park, H. N. Chan and S. H. Choi, J. Mol. Catal. B: Enzym., 39(1-4), 62-68 (2006).

    8

    8. O. Salata, J. Nanobiotechnology, 2, 3-8 (2004).

    9

    9. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst and R. N. Muller, Chem. Rev., 108(6), 2064-2110(2008).

    10

    10. C. Sun, J. S. Lee and M. Zhang, Adv. Drug Delivery Rev., 60(11), 1252-1265 (2008).

    11

    11. P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H. Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie and Z. F. Liu, Sci. Total Environ., 424, 1-10 (2012).

    12

    12. A. K. Johnson, A. M. Zawadzka, L. A. Deobald, R. L. Crawford and A. J. Paszczynski, J. Nanopart. Res., 10(6), 1009-1025 (2008).

    13

    13. Y. Sahoo, H. Pizem, T. Fried, D. Golodnitsky, L. Burstein, C. N. Sukenik and G. Markovich, Langmuir, 17(25), 7907-7911 (2001).

    14

    14. H. Lee, E. Lee, D. K. Kim, N. K. Jang, Y. Y. Jeong and S. Jon, J. Am. Chem. Soc., 128 (22), 7383-7389 (2006).

    15

    15. H.-L. Liu, S. P. Ko, J.-H. Wu, M.-H. Jung, J. H. Min, J. H. Lee, B. H. An and Y. K. Kim, J. Magn. Magn. Mater., 310(2), 815-817 (2007).

    16

    16. Y. Lee, J. Lee, C. J. Bae, J.-G. Park, H. -J. Noh, J. -H. Park and T. Hyeon, Adv. Funct. Mater., 15(3), 503-509(2005).

    17

    17. J. W. Lee, Y. J. Lee, H. B. Na, T. Y. Yu, H. Kim, S. M. Lee, Y.-M. Koo, J. H. Kwak, H. G. Park, H. N. Chang, M. S. Hwang, J. G. Park, J. B. Kim and T. H. Hyeon, Small, 4(1), 143-152 (2008).

    18

    18. P. Villeneuve, J. M. Muderhwa, J. Graille and M. J. Haas, J. Mol. Catal. B: Enzym., 9(4-6), 113-148 (2000).

    19

    19. S. H. Ha, M. N. Lan, S. H. Lee, S. M. Hwang and Y.-M. Koo, Enzym. Microb. Technol., 41(4), 480-483 (2007).

    20

    20. S. H. Ha, M. N. Lan and Y.-M. Koo, Enzym. Microb. Technol., 47(1-2), 6-10 (2010).

    21

    21. S. H. Ha, S. H. Lee, D. T. Dang, M. S. Kwon, W.-J. Chang, Y. J. Yu, I. S. Byun and Y.-M. Koo, Korean J. Chem. Eng., 25(2), 291-294 (2008).

    22

    22. W. Tischer and F. Wedekind, Top. Curr. Chem., 200, 95-126 (1999).

    23

    23. J. M. Guisan, ‘Immobilization of Enzymes and Cells’, 2nd Ed., Humana Press, New Jersey, 2006.

    24

    24. M. I. Kim, J. B. Kim, J. W. Kim, S. J. Shin, H. B. Na, T. H. Hyeon, H. G. Park and H. N. Chang, Micropor. Mesopor. Mater., 111(1-3), 18-23 (2008).

    25

    25. M. I. Kim, J. B. Kim, J. W, Lee, H. Jia, H. B. Na, J. K. Youn, J. H. Kwak and A. Dohnalkova, Biotechnol. Bioeng., 96(2), 210-218 (2007).

    26

    26. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, J. Biol. Chem. 193, 265-275 (1951).

    27

    27. D. T. Dang, S. H. Ha, S.-M. Lee, W. -J. Chang and Y.-M. Koo, J. Mol. Catal. B: Enzym., 45(3-4), 118-121(2007).

    상단으로 이동

    분석과학