- P-ISSN 1225-0163
- E-ISSN 2288-8985
TXRF는 시료전처리 없이 분말상 시료의 정량분석이 가능하여 토양시료를 효율적으로 분석할수 있다. 기존의 내부표준법을 이용한 분석법은 매질 효과 및 형광신호의 겹침으로 인한 간섭 효과로 인해 정확도가 떨어진다. 이를 개선하기 위해 외부표준법을 적용하여 용액화한 토양시료와 분말상 토양시료를 분석하였다. 용액화한 토양시료의 경우 개별표준물질로 만든 표준용액으로 작성한 검량선으로 분석하였는데, 내부 및 외부표준법 간 유의미한 차이가 없었다. 반면 분말상 토양시료로 부유용액을 만들어 검량선을 작성한 후 이를 이용하여 분말상 토양시료를 분석한 결과, 전반적으로 외부표준법을 적용한결과가 내부표준법의 그것에 비해 정확도가 높았다. 두 가지 표준토양시료로 교차검증한 결과, Al, Fe, K, Ca, Ti, Ba, Mn, Sr, Rb, Cu 등 10개의 원소들에 대해 ± 20% 내외의 상대오차가 측정되었다.
TXRF is a powerful technique for the soil sample analysis due to its ability to conduct quantitative analysis of powder sample without complicated pre-treatment processes. The conventional internal standard method used for this technique suffers from relatively low accuracy because of varying matrix effects of soil. In order to improve the accuracy, external standard method was applied to analyze two types of soil samples; acid-dissolutionized soil solution and detergent-suspended soil powder. Individual ICP-AES/MS grade standards were mixed, diluted and measured to create standard curves, but applying these curves for analyzing the soil solution sample did not make any improvement in comparison with the internal standard method. On the other hand, standard curves were created with using standard soil powders for the analysis of soil powder samples, and we found that this method increased the accuracy significantly relative to the internal standard method. Especially, Al, Fe, K, Ca, Ti, Ba, Mn, Sr, Rb, Cu was measured with relatively high accuracy (relative error = ±20 %).
1. D. B. Smith, L. G. Woodruff, R. M. O’Leary, W. F. Cannon, R. G. Garrett, J. E. Kilburn and M. B. Goldhaber, Appl. Geochem., 24(8), 1357-1368 (2009).
2. E. K. Towett, K. D. Shepherd, and G. Cadisch, Sci. Total Environ., 463-464, 374-388 (2013).
3. K. Shepherd and M. Walsh, J. Near Infrared Spectrosc., 15(1), 1-20 (2007).
4. E. K. Towett, K. D. Shepherd, J. E. Tondoh, L. A. Winowiecki, T. Lulseged, M. Nyambura, A. Sila, T.-G. Vågen and G. Cadisch, Geoderma Reg., 5, 157-168(2015).
5. H. Stosnach, Spectrochim. Acta B., 61(10-11 SPEC. ISS.), 1141-1145 (2006).
6. G. H. Floor, E. Marguí, M. Hidalgo, I. Queralt, P. Kregsamer, C. Streli and G. Román-Ross, Chem. Geol., 352, 19-26 (2013).
7. R. M. Morgan, P. Wiltshire, A. Parker and P. A. Bull, Forensic Science International, 162(1-3), 152-162(2006).
8. O. López-Costas, Ó. Lantes-Suárez and A. Martínez Cortizas, J. Archaeol. Sci., 67, 43-51 (2016).
9. J. Kruse, M. Abraham, W. Amelung, C. Baum, R. Bol, O. Kühn, H. Lewandowski, J. Niederberger, Y. Oelmann, C. Rüger, J. Santner, M. Siebers, N. Siebers, M. Spohn, J. Vestergren, A. Vogts and P. Leinweber, J. Plant Nutr. Soil Sci., 178(1), 43-88 (2015).
10. M. Felipe-Sotelo, M. J. Cal-Prieto, M. P. Gómez-Carracedo, J. M. Andrade, A. Carlosena and D. Prada, Anal. Chim. Acta, 571(2), 315-323 (2006).
11. M. Savio, S. Cerutti, L. D. Martinez, P. Smichowski and R. A. Gil, Talanta, 82(2), 523-527 (2010).
12. R. Klockenkämper and A. Von Bohlen, X-Ray Spectrom., 25(4), 156-162 (1996).
13. P. Wobrauschek, X-Ray Spectrom., 36(5), 289-300(2007).
14. H. Stosnach, Lab report. Bruker AXS Microanalysis GmbH., [Report No.: XRF 426] (2007).
15. T. Y. Cherkashina, S. V. Panteeva and G. V. Pashkova, Spectrochim. Acta B., 99, 59-66 (2014).