Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Improvement of accuracy in quantitative TXRF analysis of soil sample by applying external standard method

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2016, v.29 no.6, pp.261-268
https://doi.org/10.5806/AST.2016.29.6.261






  • Downloaded
  • Viewed

Abstract

TXRF is a powerful technique for the soil sample analysis due to its ability to conduct quantitative analysis of powder sample without complicated pre-treatment processes. The conventional internal standard method used for this technique suffers from relatively low accuracy because of varying matrix effects of soil. In order to improve the accuracy, external standard method was applied to analyze two types of soil samples; acid-dissolutionized soil solution and detergent-suspended soil powder. Individual ICP-AES/MS grade standards were mixed, diluted and measured to create standard curves, but applying these curves for analyzing the soil solution sample did not make any improvement in comparison with the internal standard method. On the other hand, standard curves were created with using standard soil powders for the analysis of soil powder samples, and we found that this method increased the accuracy significantly relative to the internal standard method. Especially, Al, Fe, K, Ca, Ti, Ba, Mn, Sr, Rb, Cu was measured with relatively high accuracy (relative error = ±20 %).

keywords
TXRF, soil, quantitative analysis, external standard method


Reference

1

1. D. B. Smith, L. G. Woodruff, R. M. O’Leary, W. F. Cannon, R. G. Garrett, J. E. Kilburn and M. B. Goldhaber, Appl. Geochem., 24(8), 1357-1368 (2009).

2

2. E. K. Towett, K. D. Shepherd, and G. Cadisch, Sci. Total Environ., 463-464, 374-388 (2013).

3

3. K. Shepherd and M. Walsh, J. Near Infrared Spectrosc., 15(1), 1-20 (2007).

4

4. E. K. Towett, K. D. Shepherd, J. E. Tondoh, L. A. Winowiecki, T. Lulseged, M. Nyambura, A. Sila, T.-G. Vågen and G. Cadisch, Geoderma Reg., 5, 157-168(2015).

5

5. H. Stosnach, Spectrochim. Acta B., 61(10-11 SPEC. ISS.), 1141-1145 (2006).

6

6. G. H. Floor, E. Marguí, M. Hidalgo, I. Queralt, P. Kregsamer, C. Streli and G. Román-Ross, Chem. Geol., 352, 19-26 (2013).

7

7. R. M. Morgan, P. Wiltshire, A. Parker and P. A. Bull, Forensic Science International, 162(1-3), 152-162(2006).

8

8. O. López-Costas, Ó. Lantes-Suárez and A. Martínez Cortizas, J. Archaeol. Sci., 67, 43-51 (2016).

9

9. J. Kruse, M. Abraham, W. Amelung, C. Baum, R. Bol, O. Kühn, H. Lewandowski, J. Niederberger, Y. Oelmann, C. Rüger, J. Santner, M. Siebers, N. Siebers, M. Spohn, J. Vestergren, A. Vogts and P. Leinweber, J. Plant Nutr. Soil Sci., 178(1), 43-88 (2015).

10

10. M. Felipe-Sotelo, M. J. Cal-Prieto, M. P. Gómez-Carracedo, J. M. Andrade, A. Carlosena and D. Prada, Anal. Chim. Acta, 571(2), 315-323 (2006).

11

11. M. Savio, S. Cerutti, L. D. Martinez, P. Smichowski and R. A. Gil, Talanta, 82(2), 523-527 (2010).

12

12. R. Klockenkämper and A. Von Bohlen, X-Ray Spectrom., 25(4), 156-162 (1996).

13

13. P. Wobrauschek, X-Ray Spectrom., 36(5), 289-300(2007).

14

14. H. Stosnach, Lab report. Bruker AXS Microanalysis GmbH., [Report No.: XRF 426] (2007).

15

15. T. Y. Cherkashina, S. V. Panteeva and G. V. Pashkova, Spectrochim. Acta B., 99, 59-66 (2014).

상단으로 이동

Analytical Science and Technology