Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Comparative analysis of urinary metabolites in methamphetamine self-administrated rats

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2017, v.30 no.3, pp.122-129
https://doi.org/10.5806/AST.2017.30.3.122





  • Downloaded
  • Viewed

Abstract

Methamphetamine addiction is a critical issue due to the lack of effective pharmacotherapy and high potential for relapse. Nevertheless, there are no distinct biomarkers for diagnosis or prognosis for methamphetamine addiction. In the present study, a rat model for methamphetamine self-administration was established and alteration of urinary metabolites by methamphetamine addiction was investigated by the targeted metabolite analysis using mass spectrometry. Rat urine samples were collected at three time points (before and after addiction and after extinction) from the methamphetamine-addicted group as well as the age-matched control group. The collected samples were prepared using AbsoluteIDQ p180 kit and analyzed using flow injection analysis (FIA) - or high performance liquid chromatography (HPLC) - tandem mass spectrometry (MS/MS). The levels of lysine, acetylornithine and methioninesulfoxide were distinctively altered depending on the status of metheamphetamine addiction or extinction. In particular, the level of acetylornithine was reversely changed from addiction to extinction, for which further studies could be useful for biomarker discovery or mechanistic studies for methamphetamine addiction.

keywords
methamphetamine, self-administration, metabolite, mass spectrometry, acetylornithine


Reference

1

1. W. J. Panenka, R. M. Procyshyn, T. Lecomte, G. W. MacEwan, S. W. Flynn, W. G. Honer, and A. M. Barr, Drug Alcohol Depend, 129(3), 167-79 (2013).

2

2. M. Bagheri, A. Mokri, A. Khosravi, and K. Kabir, Int. J. High Risk. Behav. Addict., 4(3), e23903 (2015).

3

3. N. Galbraith, BJPsych. Bull., 39(5), 218-20 (2015).

4

4. T. Brackins, N. C. Brahm, and J. C. Kissack, J. Pharm. Pract., 24(6), 541-50 (2011).

5

5. H. Li, Q. Bu, B. Chen, X. Shao, Z. Hu, P. Deng, L. Lv, Y. Deng, R. Zhu, Y. Li, B. Zhang, J. Hou, C. Du, Q. Zhao, D. Fu, Y. Zhao, and X. Cen, PLoS One, 9(1), e87040(2014).

6

6. K. J. Boudonck, M. W. Mitchell, L. Nemet, L. Keresztes, A. Nyska, D. Shinar, and M. Rosenstock, Toxicol Pathol, 37(3), 280-92 (2009).

7

7. K. Dettmer, P. A. Aronov, and B. D. Hammock, Mass. Spectrom Rev., 26(1), 51-78 (2007).

8

8. L. V. Panlilio, C. W. Schindler, and S. R. Goldberg, In ‘Addiction Research Methods’, pp 269-284, Wiley-Blackwell, 2010.

9

9. L. V. Panlilio and S. R. Goldberg, Addiction, 102(12), 1863-70 (2007).

10

10. H. M. Ahsan, J. B. de la Pena, C. J. Botanas, H. J. Kim, G. Y. Yu, and J. H. Cheong, Biomol. Ther (Seoul), 22(5), 460-6 (2014).

11

11. S. S. Yoon, J. W. Seo, S. H. Ann, H. Y. Kim, H. S. Kim, H. Y. Cho, J. Yun, E. Y. Chung, J. S. Koo, and C. H. Yang, Neurosci. Lett., 555, 198-202 (2013).

12

12. S. S. Yoon, H. Kim, K. H. Choi, B. H. Lee, Y. K. Lee, S. C. Lim, S. H. Choi, M. Hwang, K. J. Kim, and C. H. Yang, Brain. Res. Bull., 81(6), 625-30 (2010).

13

13. S. S. Yoon, E. J. Yang, B. H. Lee, E. Y. Jang, H. Y. Kim, S. M. Choi, S. C. Steffensen, and C. H. Yang, Psychopharmacology (Berl), 222(2), 303-11 (2012).

14

14. R. R. Comelia, B.; Sascha, D., ‘Analysis of human urine using the AbsoluteIDQTM kit’, Biocrates Life Scicences AG.

15

15. S. Bouatra, F. Aziat, R. Mandal, A. C. Guo, M. R. Wilson,C. Knox, T. C. Bjorndahl, R. Krishnamurthy, F. Saleem, P. Liu, Z. T. Dame, J. Poelzer, J. Huynh, F. S. Yallou, N. Psychogios, E. Dong, R. Bogumil, C. Roehring, and D. S. Wishart, PLoS One, 8(9), e73076 (2013).

16

16. D. S. Wishart, T. Jewison, A. C. Guo, M. Wilson, C. Knox, Y. Liu, Y. Djoumbou, R. Mandal, F. Aziat, E. Dong, S. Bouatra, I. Sinelnikov, D. Arndt, J. Xia, P. Liu, F. Yallou, T. Bjorndahl, R. Perez-Pineiro, R. Eisner, F. Allen, V. Neveu, R. Greiner, and A. Scalbert, Nucleic. Acids. Res., 41(Database issue), D801-7 (2013).

17

17. K. Suhre, S. Y. Shin, A. K. Petersen, R. P. Mohney, D. Meredith, B. Wagele, E. Altmaier, CardioGram, P. Deloukas, J. Erdmann, E. Grundberg, C. J. Hammond, M. H. de Angelis, G. Kastenmuller, A. Kottgen, F. Kronenberg, M. Mangino, C. Meisinger, T. Meitinger, H. W. Mewes, M. V. Milburn, C. Prehn, J. Raffler, J. S. Ried, W. Romisch-Margl, N. J. Samani, K. S. Small, H. E. Wichmann, G. Zhai, T. Illig, T. D. Spector, J. Adamski, N. Soranzo, and C. Gieger, Nature, 477(7362), 54-60(2011).

18

18. B. Yu, Y. Zheng, D. Alexander, A. C. Morrison, J. Coresh, and E. Boerwinkle, PLoS Genet, 10(3), e1004212(2014).

19

19. J. L. McClay, S. A. Vunck, A. M. Batman, J. J. Crowley, R. E. Vann, P. M. Beardsley, and E. J. van den Oord, J Neuroimmune Pharmacol, 10(3), 425-34 (2015).

상단으로 이동

Analytical Science and Technology