Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Method development for quantitative analysis of naturally occurring radioactive nuclides in building materials

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2017, v.30 no.5, pp.252-261
https://doi.org/10.5806/AST.2017.30.5.252






  • Downloaded
  • Viewed

Abstract

Naturally occurring radioactive materials (NORMs) increase radiation exposure to the public as these materials are concentrated through artificial manufacturing processes by human activities. This study focuses on the development of a method for the quantitative analysis of 232Th, 235U, and 238U in building materials. The accuracy and precision of inductively coupled plasma mass spectrometry (ICP-MS) for determination of digestion processes was evaluated for certified reference materials (CRMs) digested using various mixed acid (e.g., aqua regia, hydrofluoric acid, and perchloric acid) digestions and a LiBO2 fusion method. The method validation results reveal that a LiBO2 fusion and Fe(OH)3 co-precipitation should be applied as the optimal sample digestion process for the quantitative analysis of radionuclides in building materials. The radioactivity of 232Th, 235U, and 238U in a total of 51 building material (e.g., board, brick, cement, paint, tile, and wall paper) samples was quantitatively analyzed using an established process. Finally, the values of 238U and 232Th radioactivity were comprehensively compared with those from the indirect method using γ-spectrometry.

keywords
NORM, Alkali fusion, ICP-MS, Building material, <TEX>$^{238}U$</TEX>, <TEX>$^{232}Th$</TEX>


Reference

1

1. A. S. Paschoa, Appl. Radiat. Isot., 49, 189-196 (1998).

2

2. International Commission on Radiological Protection. ‘The 2007 Recommendations of the International Commission on Radiological Protection’, ICRP Publication 103, 2007.

3

3. Q. H. Hu, J. Q. Weng and J. S. Wang, J. Environ. Radioact., 101, 426-437 (2010).

4

4. M. Mola, M. Palomo, A. Penalvear, C. Aguilar and F. Borrull, J. Hazard. Mater., 198, 57-64 (2011).

5

5. F. S. Al-Saleh and G. A. Al-Harshan, J. Environ. Radioact., 99, 1026-1031 (2008).

6

6. N. Ibrahim, J. Environ. Radioact., 43, 255-258 (1999).

7

7. A. Kumar, M. Kumar, B. Singh and S. Singh, Radiation Measurements, 36, 465-469 (2003).

8

8. D. Amrania and M. Tahtatb, Appl. Radiat. Isot., 54, 687-689 (2001).

9

9. Y. H. Cho, C. J. Kim, J. Y. Yun, D. H. Cho and K. P. Kim, J. Radiat. Prot., 3, 181-190 (2012).

10

10. S. N. dos Santos and L. R. F. Alleoni, Water Air Soil Pollut., 224, 1430-1445 (2013).

11

11. M. Chen and L. Q. Ma, Soil Sci. Soc. Am. J., 65, 491-499 (2001).

12

12. Z. Hseu, Z. Chen, C. Tsai, C. Tsui, S. Cheng, C. Liu and H. Lin, Water, air, and Soil Pollut., 141, 189-205(2002).

13

13. J. Janda, P. Sladek and D. Sas, J. Radioanal. Nucl. Chem., 293, 223-229 (2012).

14

14. J. Mantero, M. Lehritane, S. Hurtado and R. Garcı'a-Tenorio, J. Radioana. Nucl. Chem., 286, 557-563 (2010).

15

15. J. K. Haken, Ind. Eng. Chem. Prod. Res., 25, 163-171(1986).

16

16. H. E. Carter, P. Warwick, J. Cobbb and G. Longworth, Analyst, 124, 271-274 (1999).

17

17. C. J. Brookes, I. G. Betteley and S. M. Loxton, ‘Fundamentals of Mathematics and Statistics, Wiley, 1979.

18

18. M. Seferinoglu, A. Dirican, P. E. Erden and D. Ericin, Appl. Radiat. Isot., 94, 355-362 (2014).

19

19. International Atomic Energy Agency, ‘Extent of Environmental Contamination by naturally occurring radioactive material (NORM) and technological options for mitigation’, Tech report 419, 2003.

20

20. N. M. Hassan, T. Ishikawa, M. Hosoda, A. Sorimachi, S. Tokonami, Ma. Fukushi and S. K. Sahoo, J. Radioanal. Nucl. Chem., 283, 15-21 (2009).

21

21. Y. Y. Ji, K. H. Jung, J. M. Lim, C. J. Kim, M. Jang, M. J. Kang, S. T. Park, Z. H. Woo, B. C. Koo and B. K. Seo, J. Nucl. Fuel Cycle Waste Techno., 12, 97-105(2014).

22

22. J. Y. Park, J. M. Lim, Y. Y. Ji, C. S. Lim, B. U. Jang, K. H. Chung, W. Lee and M. J. Kang, J. Radiat. Prot. Res., 41(4), 359-367 (2017).

23

23. International Atomic Energy Agency, ‘Extent of environmental contamination by Naturally Occurring Radioactive Material (NORM) and technological options for mitigation’, 2003.

상단으로 이동

Analytical Science and Technology