- P-ISSN 1225-0163
- E-ISSN 2288-8985
The objective of this study was the development of a discrimination model for the cultivational origin of paper mulberry bast fiber and Hanji using near infrared (NIR) and mid infrared (MIR) spectroscopy combined with partial least squares discriminant analysis (PLS-DA). Paper mulberry bast fiber was purchased in 10 different regions of Korea, and used to make Hanji. PLS-DA was performed using pre-treated FT-NIR and FT-MIR spectral data for paper mulberry bast fiber and Hanji. PLS-DA of paper mulberry bast fiber and Hanji samples, using FT-NIR spectral data, showed 100% performance in cross validation and the confusion matrix (accuracy, sensitivity, and specificity). The discrimination models showed four regional groups which demonstrated clearer separation and much superior score plots in the NIR spectral data-based model than in the MIR spectral data-based model. Furthermore, the discrimination model based on the NIR spectral data of paper mulberry bast fiber had highly similar score morphology to that of the discrimination model based on the NIR spectral data of Hanji.
1. O. H. Kwon and H. C. Kim, J. Korea TAPPI, 43(4), 59-66 (2011).
2. J. G. Kwon, C. Seo, S. S. Hong, D. W. Seo, J. S. Oh, and J. K. Kim, J. Korean Soc. Food Sci. Nutr., 45(11), 1604-1609 (2016).
3. J. H. Cho, K. J. Kim, S. B. Park, and T. J. Eom, J. Korea TAPPI, 41(3), 42-48 (2009).
4. H. C. Kim and U. Y. Kim, Fiber Technol. Industry, 13(1), 13-20 (2009).
5. S. I. Lee, W. H. Chung, W. S. Kwon, J. H. Lim, and S. C. Kim, J. Health Info. Stat., 36(2), 183-192 (2011).
6. K. J. Kim and T. J. Eom, J. Korea TAPPI, 48(1), 34-42(2016).
7. H. Lee, Y. Lee, C. H. Jun, and J. H. Hong, KJAS, 23(2), 295-304 (2010).
8. I. Santoni, E. Callone, A. Sandak, J. Sandak, and S. Dirè, Carbohydr. Polym., 117, 710-721 (2015).
9. D. C. Silva, T. C. M. Pastore, L. F. Soares, F. A. S. de Barros, M. C. J. Bergo, V. T. H. Coradin, A. B. Gontijo, M. H. Sosa, C. B. Chacón, and J. W. B. Braga, Holzforschung, 72(7), 521-530 (2018).
10. C. J. Lee, J. W. Ko, and G. B. Lee, Korean Chem. Eng. Res., 48(6), 717-724 (2010).
11. S. N. Ismail, M. Maulidiani, M. T. Akhtar, F. Abas, I. S. Ismail, A. Khatib, N. A. M. Ali, and K. Shaari, Molecules, 22(10), 1-13 (2017).
12. J. Y. Leem, Yakhak Hoeji, 60(1), 29-35 (2016).
13. G. Jiang and J. Y. Leem, Korean J. Medicinal Crop. Sci., 24(2), 93-100 (2016).
14. D. Y. Kim, C. Mo, J. S. Kang, and B. K. Cho, J. Korean Soc. Nondestruc. Test., 35(1), 1-11 (2015).
15. M. S. Lee, H. M. Park, B. I. Kim, and T. Y. Heo, J. Korea Industr. Inf. Syst. Res., 17(5), 89-96 (2012).
16. Y. D, Kim, C. H. Jun, and H. S. Lee, JKDIS, 22(5), 931-940 (2011).
17. M. Schwanninger, J. C. Rodrigues, and K. Fackler, J. Near Infrared Spectrosc., 19(5), 287-308 (2011).
18. S. W. Hwang, W. H. Lee, Y. Horikawa, and J. Sugiyama, J. Korean Wood Sci. Technol., 43(6), 701-713 (2015).
19. J. P. McLean, G. Jin, M. Brennan, M. K. Nieuwoudt, and P. J. Harris, Can. J. For. Res., 44(7), 820-830 (2014).
20. S. Jiangtao, X. Dong, and L. Jian, Energy Procedia, 16(B), 758-762 (2012).
21. R. Rana, R. Langenfeld-Heyser, R. Finkeldey, and A. Polle, Wood Sci. Technol., 44(2), 225-242 (2010).
22. S. Durmaz, Ö. Özgenç, İ. H. Boyacı, Ü. C. Yıldız, and E. Erişir, Vib Spectroscopy, 85, 202-207 (2016).
23. M. Traoré, J. Kaal, and A. M. Cortizas, Wood Sci. Technol., 52(2), 487-504 (2018).
24. R. G. Brereton and G. R. Lloyed, J. Chemometrics, 28(4), 213-225 (2014).
25. J. Trygg, E. Holmes, and T. Lundstedt, J. Proteome Res., 6(2), 469-79 (2007).