- P-ISSN 1225-0163
- E-ISSN 2288-8985
Alumina is one of the most important ceramic materials because of its useful physical and chemical properties. Recently, high-purity alumina has been used in various industrial fields. This leads to increasing demand for reliable elemental analysis of impurities in alumina samples. However, the chemical inertness of alumina makes the sample preparation for conventional elemental analysis a tremendously difficult task. Herein, we demonstrated the feasibility of laser ablation for effective sampling of alumina powder. Laser ablation performs sampling rapidly without any chemical reagents and also allows simultaneous optical emission spectroscopy and mass spectrometry analyses. For six alumina samples including certified reference materials and commercial products, laser-induced breakdown spectroscopy (LIBS) and laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) analyses were performed simultaneously based on a common laser ablation sampling. LIBS was found to be useful to quantify alkali and alkaline earth metals with limits-ofdetection (LODs) around 1 ppm. LA-ICP-MS could quantify transition metals such as Ti, Cu, Zn, and Zr with LODs in the range from a few tens to hundreds ppb.
1. P. Atkins and L. Jones, ‘Chemical Principles The Quest for Insight’, W. H. Freeman and Company, New York, 2008.
2. Y. L. Wu, J. Hong, D. Peterson, J. Zhou, T. S. Cho, and D. N. Ruzic, Surf. Coat. Technol., 237, 369-378 (2013).
3. G. Molnár, J. Borossay, Z. B. Varga, M. Ballók, and A. Bartha, Mikrochim. Acta, 134, 193-197 (2000).
4. H. Matusiewicz, Mikrochim. Acta, 111, 71-82 (1993).
5. M. T. Larrea, I. Gómez-pinilla, and A. C. Fariňas, J. Anal. At. Spectrom., 12, 1323-1332 (1997).
6. H.A. Foner, Anal. Chem., 56, 856-859 (1984).
7. S. Jung, S. Kim, and J. Hinrichs, Spectrochim. Acta B, 122, 45-51 (2016).
8. N. Jakubowski, T. Prohaska, L. Rottmann, and F. Vanhaecke, J. Anal. At. Spectrom., 26, 693-726 (2011).
9. N. Jakubowski, T. Prohaska, F. Vanhaecke, P. H. Roos, and T. Lindemann, J. Anal. At. Spectrom., 26, 727-757 (2011).
10. W. Schelles, S. D. Gendt, V. Muller, and R. V. Grieken, Appl. Spectrosc., 49, 939-944 (1995).
11. V. Hoffmann, M. Kasik, P. K. Robinson, and C. Venzago, Anal. Bioanal. Chem., 381, 173-188 (2005).
12. M. Kasik, C. Venzago, and R. Dorka, J. Anal. At. Spectrom., 18, 603-611 (2003).
13. J. C. Woo, N. Jakubowski, and D. Stuewer, J. Anal. At. Spectrom., 8, 881-889 (1993).
14. R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, Anal. Chem., 85, 6162-6177 (2013).
15. F. J. Fortes, J. Moros, P. Lucena, L. M. Cabalín, and J. J. Laserna, Anal. Chem., 85, 640-669 (2013).
16. D. W. Hahn and N. Omenetto, Appl. Spectrosc., 66, 347-419 (2012).
17. N. L. LaHaye, M. C. Phillips, A. M. Duffin, G. C. Eiden, and S. S. Harilal, J. Anal. At. Spectrom., 31, 515-522 (2016).
18. A. W. Miziolek, V. Palleschi, and I. Schechter, ‘Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications’, Cambridge University Press, Cambridge, 2006.
19. S. H. Tan, and G. Horlick, Appl. Spectrosc., 40, 445-460(1986).
20. E. Albalat, P. Telouk, V. Balter, T. Fujii, V. P. Bondanese, M.-L. Plissonnier, V. Vlaeminck-Guillem, J. Baccheta, N. Thiam, P. Miossec, F. Zoulim, A. Puisieux, and F. Albarede, J. Anal. At. Spectrom., 31, 1002-1001 (2016).
21. S.-H. Nam, H. Chung, J.-J. Kim, and Y.-I. Lee, Bull. Korean Chem. Soc., 29, 2237-2240 (2008).
22. J. P. Singh and S. N. Thakur, ‘Laser-Induced Breakdown Spectroscopy’, Elsevier Science, Amsterdam, 2007.
23. NIST Atomic Spectra Database, https://www.nist.gov/pml/atomic-spectra-database.