- P-ISSN 1225-0163
- E-ISSN 2288-8985
Analysis techniques using DNA profiling are widely used in various fields including forensic science and new technologies such as the Direct PCR amplification method are being developed continuously in order to acquire the DNA profiles efficiently. However, it has a limits such as non-specific amplification according to the quality of crime scene evidence samples. Especially, split peaks caused by excessive DNA samples are one of the important factors that could cause the debate to allow researchers to interpret the DNA profile results. In this study, we confirmed the occurrence rate of split peaks in each STR (short tandem repeats) locus of the GlobalFilerTM kit and investigated the possibility of improving the split peaks using several PCR additives such as DMSO (dimethylsulfoxide), MgCl2, Betaine and Tween-20. As a result, we could make three groups according to the occurrence rate of split peaks in Direct PCR and it was confirmed that the ratio of split peaks could be reduced by DMSO (87.4 %), MgCl2 (84.5 %) and Betaine (86.1 %), respectively. These results indicate that PCR additives such as DMSO, MgCl2 and Betaine can be improve the split peaks in Direct PCR and thereby facilitate subsequently a successful DNA profile results.
1. P. Gill, J. Whitaker, C. Flaxman, N. Brown, and J. Buckleton, Forensic Sci. Int., 112(1), 17-40 (2000).
2. P. Gill, Croat. Med. J., 42(3), 229-232 (2001).
3. I. Findlay, A. Taylor, P. Quirke, R. Frazier, and A. Urquhart, Nature, 389(6651), 555-556 (1997).
4. S. E. Cavanaugh and A. S. Bathrick, Foresic Sci. Int. Genet., 32, 40-49 (2018).
5. J. Templeton, R. Ottens, V. Paradiso, O. Handt, D. Taylor, and A. Linacre, Forensic Sci. Int. Genet. Suppl. Ser., 4, e224-e225 (2013).
6. A. Ambers, R. Wiley, N. Novroski, and B. Budowle, Forensic Sci. Int. Genet., 32, 80-87 (2018).
7. C. Gomes, J. Martínez-Gómez, L. Díez-Juárez, S. Díaz-Sánchez, S. Palomo-Díez, E. Arroyo-Pardo, M. Cano-López, and J. Fernández-Serrano, Forensic Sci. Int. Genet. Suppl. Ser., 6, e265-e266 (2017).
8. A. Aufauvre-Brown, C. M. Tang, and D. W. Holden, Curr. Genet., 24, 177-178 (1993).
9. Y. C. Swaran and L. Welch, Forensic Sci. Int. Genet., 6, 407-412 (2012).
10. R. A. H. van Oorschot, D. G. Phelan, S. Furlong, G. M. Scarfo, N. L. Holding, and M. J. Cummins, Int. Congr. Ser., 1239, 803-807 (2003).
11. B. A. Myers, J. L. King, and B. Budowle, Forensic Sci. Int. Genet., 6(5), 640-645 (2012).
12. S. Flores, J. Sun, J. King, and B. Budowle, Forensic Sci. Int. Genet., 10, 33-39 (2014).
13. D. Y. Wang, S. Gopinath, R. E. Lagacé, W. Norona, L. K. Hennessy, M. L. Short, and J. J. Mulero, Forensic Sci. Int. Genet., 19, 148-155 (2015).
14. J. E. L. Templeton, D. Taylor, O. Handt, and A. Linacre, Forensic Sci. Int. Genet., 29, 276-282 (2017).
15. M. D. Timken, S. B. Klein, and M. R. Buoncristiani, Forensic Sci. Int. Genet., 11, 195-204 (2014).
16. R. Chakrabarti and C. E. Schutt, Nucleic Acids Res., 29(11), 2377-2381 (2001).
17. R. Chakrabarti and C. E. Schutt, Gene, 274, 293-298(2001).
18. M. Musso, R. Bocciardi, S. Parodi, R. Ravazzolo, and I. Ceccherini, J. Mol. Diagn., 8(5), 544-550 (2006).
19. A. Barbaro, G. Falcone, and A. Barbaro, Prog. Forensic Genet., 8, 523-525 (2000).
20. J. Y. Kim, K. S. Jeong, K. M. Lee, Y. J. Kim, D. H. Choi, and N. S. Cho, J. Sci. Crim. Invest., 9(4), 258-265(2015).
21. P. N. Hengen, Trends Biochem. Sci., 22(6), 225-226(1997).
22. N. Baskaran, R. P. Kandpal, A. K. Bhargava, M. W. Glynn, A. Bale, and S. M. Weissman, Genome Res., 6(7), 633-668 (1996).
23. M. A. Jensen, M. Fukushima, and R. W. Davis, PLoS One, 5(6), e11024 (2010).
24. S. Frackman, G. Kobs, D. Simpson, and D. Storts, Promega Notes, 65, 27-30 (1998).
25. T. C. Lorenz, J. Vis. Exp., 22(63), e3998 (2012).