• P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Determination of methamphetamine and amphetamine enantiomers in human urine by chiral stationary phase liquid chromatography-tandem mass spectrometry

Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2019, v.32 no.5, pp.163-172
https://doi.org/10.5806/AST.2019.32.5.163
Yeong Eun Sim (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)

Jin Young Kim (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
  • Downloaded
  • Viewed

Abstract

Methamphetamine (MA) is currently the most abused illicit drug in Korea and its major metabolite is amphetamine (AP). As MA exist as two enantiomers with the different pharmacological properties, it is necessary to determine their respective amounts in a sample. Thus a chiral stationary phase liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed for identification and quantification of d-MA, l-MA, d-AP, and l-AP in human urine. Urine sample (200 μL) was diluted with pure water and purified using solid-phase extraction (SPE) cartridge. A 5-μL aliquot of SPE treated sample solution was injected into LC-MS/MS system. Chiral separation was carried out on the Astec Chirobiotic V2 column with an isocratic elution for each enantiomer. Identification and quantification of enantiomeric MA and AP was performed using multiple reaction monitoring (MRM) detection mode. Linear regression with a 1/x2 as the weighting factor was applied to generate a calibration curve. The linear ranges were 25-1000 ng/mL for all compounds. The intra- and inter-day precisions were within 3.6 %, while the intra- and inter-day accuracies ranged from -5.4 % to 11.8 %. The limits of detection were 2.5 ng/mL (d-MA), 3.5 ng/mL (l-MA), 7.5 ng/ mL (d-AP), and 7.5 ng/mL (l-AP). Method validation parameters such as selectivity, matrix effect, and stability were evaluated and met acceptance criteria. The applicability of the method was tested by the analysis of genuine forensic urine samples from drug abusers. d-MA is the most common compound found in urine and mainly used by abusers.

keywords
chiral separation, LC-MS/MS, d, l-methamphetamine, d, l-amphetamine, urine


Reference

1

1. Supreme Prosecutors' Office, White Paper on Drug-Related Crimes 2018, Seoul, Korea, 2019.

2

2. A. W. Brzeczko, R. Leech and J. G. Stark, Am. J. Drug Alcohol Abuse, 39, 284-290 (2013).

3

3. K. M. Andrews, J. Forensic Sci., 40, 551-560 (1995).

4

4. C. Chulathida and C. Summon, Curr. Opin. Psychiatry, 28, 269-274 (2015).

5

5. A. Gamma, R. Schleifer, W. Weinmann, A. Buadze and M. Liebrenz, PLoS One 11, e0166566 (2016).

6

6. United Nations Office on Drugs and Crime, World Drug Report 2019, Vienna, United Nations, 2019.

7

7. L. Li, T. Everhart, P. Jacob 3rd, R. Jones and J. Mendelson, Br. J. Clin. Pharmacol., 69, 187-192 (2010).

8

8. R. A. Glennon, Pharmacol. Biochem. Behav., 64, 251-256 (1999).

9

9. J. E. Mendelson, N. Uemura, D. S. Harris, R. P. Nath, E. Fernandez, P. Jacob 3rd, T. Everhart and R. T. Jones, Clin. Pharmacol. Ther., 80, 403-420 (2006).

10

10. J. E. Mendelson, D. McGlothlin, D. S. Harris, E. Foster, T. Everhart, P. Jacob 3rd and R. T. Jones, BMC Clin. Pharmacol., 8:4, 1-9 (2008).

11

11. R. W. Romberg, S. B. Needleman, J. J. Snyder and A. Greedan, J. Forensic. Sci., 40, 1100-1102 (1995).

12

12. W. A. W. Raihana, S. H. Gan and S. C. Tan, J. Chromatogr. B, 879, 8-16 (2011).

13

13. S. M. Wang, T. C. Wang and Y. S. Giang, J. Chromatogr. B, 816, 131-143 (2005).

14

14. J. P. Pascali, F. Bortolotti and F. Tagliaro, Electrophoresis, 33, 260-268 (2012).

15

15. E. M. Kim, H. S. Chung, K. J. Lee and H. J. Kim, J. Anal. Toxicol., 24, 238-244 (2000).

16

16. B. S. Foster, D. D. Gilbert, A. Hutchaleelaha and M. Mayersohn, J. Anal. Toxicol., 22, 265-269 (1998).

17

17. A. C. Lua, Y. Sutono and T. Y. Chou, Anal. Chim. Acta., 576, 50-54 (2006).

18

18. L. F. Ward, J. R. Enders, D. S. Bell, H. M. Cramer, F. N. Wallace and G. L. McIntire, J. Anal. Toxicol., 40, 255-263(2016).

19

19. E. R. Perez, J. A. Knapp, C. K. Horn, S. L. Stillman, J. E. Evans and D. P. Arfsten, J. Anal. Toxicol., 40, 201-207(2016).

20

20. F. Botrè, X. de la Torre and M. Mazzarino, Bioanalysis, 8, 1129-1132 (2016).

21

21. Y. Iwasaki, T. Sawada, K. Hatayama, A. Ohyagi, Y. Tsukuda, K. Namekawa, R. Ito, K. Saito and H. Nakazawa, Metabolites, 2, 496-515 (2012).

22

22. D. W. Armstrong and B. Zhang, Anal. Chem., 73, 577A-561A (2001).

23

23. A. N. L. Batista, F. M. dos Santos Jr., J. M. Batista Jr. and Q. B. Cass, Molecules, 23, 492-509 (2018).

24

24. F. T. Peters, O. H. Drummer and F. Musshoff, Forensic Sci. Int., 165, 216-224 (2007).

25

25. U.S. Department of Health Human Services, Food and Drug Administration, Guidance for Industry: Bioanalytical Method Validation in U.S., Beltsville, MD, 2018.

26

26. B. K. Matuszewski, M. L. Constanzer and C. M. Chavez-Eng, Anal. Chem., 75, 3019-3030 (2003).

상단으로 이동

Analytical Science and Technology