- P-ISSN 1225-0163
- E-ISSN 2288-8985
Microplastics (MP) are found in large quantities in the oceans, posing a major threat to the ecosystem. In Korea, MPs have been reported to be detected in sea salts. In order to analyze MPs, information on their composition, size, and shape is required. FT-IR microscopy is used frequently to measure sizes larger than 20 μm. Recently, however, Raman microscopy, which can analyze ultrafine plastics below 20 μm, has been applied extensively. In this study, 10.0 g samples of commercially available salts were dissolved and filtered through a 45 μm mesh filter with a size of 25.4 mm × 25.4 mm. These filtered samples were then analyzed by both FT-IR microscopy and Raman microscopy. A total of four MPs, including three polyethylene (PE) of size 70- 100 μm and a polypropylene (PP) of size 170 μm, were detected by FT-IR microscopy, while 10 MPs, including nine PE of size 10-120 μm and one polystyrene (PS) of size 40 μm, were detected by Raman microscopy. Approximately, 1,000 MPs/kg was estimated, which was almost two times higher than the previous reported levels (~550-681 particles/kg in sea salts); this is because Raman microscopy can detect much smaller MPs than FT-IR microscopy. A total of 113 particles were found using Raman microscopy: Carbon (35, 31.5 %), minerals (28, 25 %), and glass (16, 14.4 %) were dominant, forming around 70% of the total, but MPs (10, 8.8 %) and cellulose (5, 4.5 %) were also found. Raman microscopy has great potential as an accurate method for measuring MPs, as it can measure smaller size MPs than FT-IR microscopy. It also has a reduced sample preparation time.
1. J. R. Jambeck, R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, and K. L. Law, Science, 347, 768-771 (2015).
2. E. J. Carpenter, S. J. Anderson, G. R. Harvey, H. P. Miklas, and B. B. Beck, Science, 178, 749-750 (1972).
3. E. J. Carpenter and K. L. Smith, Science, 175, 1240(1972).
4. K. Davidson and S. E. Dudas, Arch. Environ. Contam. Toxicology, 71, 147-156 (2016).
5. E. M. Foekema, C. D. Gruijter, M. T. Mergia, J. A. Franeker, A. T. J. Murk and A. A. Koelmans, Environ Sci. Technol., 47, 8818-8824 (2013).
6. N. P. Ivleva, A. C. Wiesheu, and R. Niessner, Angew. Chem. Int. Ed. 56 (7), 1720-1739 (2017).
7. A. R. McCormick, T. J. Hoellein, M. G. London, J. Hittie, J. W. Scott, and J.J. Kelly, Ecosphere, 7, 11 (2016).
8. R. Dris, J. Gasperi, M. Saad, C. Mirande, and B., Tassin, Mar. Pollut. Bull., 104, 290-293 (2016).
9. G. Liebezeit and E. Liebezeit, Food Addit. Contam. Part A, 31(9), 1574-1578 (2014).
10. D. W. Lachenmeier, J. Kocareva, D. Noack, and T. Kuballa, Dtsch. Lebensm., 111, 437-440 (2015).
11. G. Liebezeit and E. Liebezeit, Food Addit. Contam., 30(12), 2136-2140 (2013).
12. S. Mintenig, M. L€oder, G. Gerdts, Probenanalyse mittels Mikro-FTIR Spektroskopie, Oldenburgisch-Ostfriesischer Wasserverband (OOWV). Alfred-Wegener-Institut, Helgoland. 50 (2014).
13. D. Schymanski, C. Goldbeck, H. U. Humpf, and P. Fürst, Water Res., 129, 154-162 (2018).
14. D. Yang, H Shi, J. Li, K. Jabeen, and P. Kolandhasamay, Environ. Sci. Technol., 49, 13622-13627 (2015).
15. A. Karami, A. Golieskardi, C. K. Choo, V. Larat, T. S. Galloway, and B. Salamatinia, Scientific Reports, 7, 46173 (2017).
16. M. E. Iniguez, J. A. Conesa, and A. Fullana, Scientific Reports, 7, 8620-8627 (2017).
17. D. H. Chae, I. S. Kim, Y. K. Song, S. W. Kim, and S. K. Kim, Journal of the Korean Society of Oceanography, 19, 88-98 (2014).
18. J. S. Kim, H. J. Lee, S. K. Kim, and H. J. Kim, Environ. Sci. Technol., 52(21), 12819-12828 (2018).
19. M. Cole, P. Lindeque, C. Halsband, and R. S. Galloway, Mar. Pollut. Bull., 62, 2588-2597 (2011).
20. E. Fries, J. H. Dekiff, J. Willmeyer, M. T. Nuelle, M. Ebert, and D. Remy, Environ. Sci. Processes Impacts, 15, 1949-1956 (2013).
21. A. Kaeppler, D. Fischer, S. Oberbeckmann, G. Schernewski, M. Labrenz, K. J. Einchhorn, and B. Voit, Anal. Bioanal. Chem., 408(29), 8377-8391 (2016).
22. D. Fischer, A Kaeppler, and K. J. Eichhorn, American. Lab., 47, 32-34 (2015).
23. J. P. Harrison, J. J. Ojeda, and M. E. Romero-Gonzalez, Sci. Total Environ., 416, 455-463 (2012).
24. M. G. J. Loder, M. Kuczera, S. Mintenig, C. Lorenz, and G. Gerdts, Environ. Chem., 12, 563-581, (2015).
25. A. S. Tagg, M. Sapp, J. P. Harrison, and J. J. Ojeda, Anal. Chem., 87, 6032-6040 (2015).
26. R. Lenz, K. Enders, C. A. Stedmon, D. M. A. Mackenzie, and T, G. Nielsen, Mar. Pollut. Bull., 100(1), 82-91(2015).
27. B. E. Oßmann, G. Sarau, S. W. Schmitt, H. Holtmannspotter, S. H. Christiansen, and W. Dicke, Anal. Bioanal. Chem., 409(16), 4099-4109 (2017).
28. A. C. Wiesheu, P. M. Anger, T. Baumann, R. Niessner, and N. P. Ivleva, Anal. Methods, 8(28), 5722-5725(2016).
29. D. Schymanski, C. Goldbeck, H. U. Humpf, and P. Furst, Water Research, 129, 154-162 (2018).
30. B. E. Obmann, G. Sarau, H. Holtmannspotter, M. Pischetsrieder, S. H. Christiansen, and W. Dicke, Water Research, 141, 307-316 (2018).
31. Y. Mato, T. Isobe, H. Takada, H. Kanehiro, C. Ohtake, and T. Kaminuma, Environ. Sci. Technol., 35(2), 318-324 (2001).
32. H. Lee, A. Kunz, W. J. Shim, and B. A. Walther, Scientific Reports, 9, 10145 (2019).