Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Electrochemically polyaniline-coated microextraction needle for phthalates in water

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2020, v.33 no.2, pp.76-85
    https://doi.org/10.5806/AST.2020.33.2.76
    Yura Hwang (Department of Chemistry, Seoul Women’s University)
    Yelin Lee (Department of Chemistry, Seoul Women’s University)
    Soyoung Ahn (Department of Chemistry, Seoul Women’s University)
    Sunyoung Bae (Department of Chemistry, Seoul Women’s University)
    • Downloaded
    • Viewed

    Abstract

    A stainless-steel needle (Hamilton 90022, 22 gauge, 718-μm o.d., 413-μm i.d., 51-mm length, bevel tip) with an electrochemically coated polyaniline layer having a microbore tunnel was newly prepared as a device for headspace in-needle microextraction. For designing the needle, the polyaniline layer length was optimized, and to evaluate the extraction efficiency for polycyclic aromatic hydrocarbons, numerous cyclic voltammetry scans were conducted. In addition, the optimization of the analytical conditions (including the adsorption and desorption parameters) and the validation of the analytical method were conducted. The optimized adsorption and desorption conditions were 40 °C for 30 min and 230 °C for 60 s, respectively. Finally, in this study, a polyaniline layer was electrochemically deposited on the in-needle surface, and it exhibited good thermal stability. The needle with the polyaniline layer was repeatedly used more than 200 times during this study. This method has some advantages in terms of the extraction time, extraction efficiency, and analysis cost.

    keywords
    polyaniline, cyclic voltammetry, polycyclic aromatic hydrocarbons, microextraction needle


    Reference

    1

    1. P. Tsai, H. Shieh, W. Lee and S. Lai, Sci. Total Environ., 278(1-3), 137-150 (2001).

    2

    2. A. Bhargava, R. Khanna, S. Bhargava and S. Kumar, Atmos. Environ., 38(28), 4761-4767 (2004).

    3

    3. E. Yoon, K. Park, H. Lee, J. Yang and C. Lee, Hum. Ecol. Risk Assess., 13(3), 669-680 (2007).

    4

    4. P. Baumard, H. Budzinski and P. Garrigues, Environ. Toxicol. Chem., 17(5), 765-776 (1998).

    5

    5. E. Manoli and C. Samara, Trends Anal. Chem., 18(6), 417-428 (1999).

    6

    6. D. Zuazagoitia, E. Millán and R. Garcia, Chromatographia, 66(9), 773-777 (2007).

    7

    7. J. Cho, J. G. Son, B. Park and B. Chung, Environ. Monit. Assess., 149, 385-393 (2009).

    8

    8. E. J. Kim, S. Choi and Y. Chang, Environ. Sci. Pollu. R., 18(9), 1508-1517 (2011).

    9

    9. R. J. Law, V. J. Dawes, R. J. Woodhead and P. Matthiessen, Mar. Pollut. Bull., 34(5), 306-322 (1997).

    10

    10. F. Sun, D. Littlejohn and M. D. Gibson, Anal. Chim. Acta, 364, 1-11 (1998).

    11

    11. C. M. Reddy and J. G. Quinn, Mar. Pollut. Bull., 38, 126-135 (1999).

    12

    12. G. Kiss, Z. Varga-Puchony and J. Hlavay, J. Chromatogr. A, 725, 261-272 (1996).

    13

    13. U. H. Yim, S. H. Hong, S. Y. Ha, G. M. Han, J. G. An, N. S. Kim, D. Lim, H. Choi and W. J. Shim, Korea. Sci. Total Environ., 470, 1485-1493 (2014).

    14

    14. H. Son, S. Bae and D. Lee, Anal. Chim. Acta, 751, 86-93 (2012).

    15

    15. H.-R. Jeon, H.-H. Son, S. Bae and D. S. Lee, Bull. Korean Chem. Soc., 36 (11), 2730-2739 (2015).

    16

    16. Y. Bang, Y. Hwang, S. Lee, S. Park and S. Bae, J. Sep. Sci., 40(19), 3839-3847 (2017).

    17

    17. S. Lee, J.-H. Yoon, S. Bae and D.-S. Lee, Food Anal. Methods, 11(10), 2767-2777 (2018).

    18

    18. H. Bagheri, E. Babanezhad and A. Es-haghi, J. Chromatogr. A, 1152(1-2), 168-174 (2007).

    19

    19. H. Bagheri and A. Roostaie, J. Chromatogr. A, 1238, 22-29 (2012).

    20

    20. X. Li, M. Zhong, S. Xu and C. Sun, J. Chromatogr. A, 1135, 101-108 (2006).

    21

    21. H. Bagheri and M. Saraji, J. Chromatogr. A, 986(1), 111-119 (2003).

    22

    22. D. Djozan and S. Bahar, Chromatographia, 59(1-2), 95-99 (2004).

    23

    23. M. Mousavi, E. Noroozian, M. Jalali-Heravi and A. Mollahosseini, Anal. Chim. Acta, 581, 71-77 (2007).

    24

    24. B. Wang, J. Tang and F. Wang, Synth. Met., 13(4), 329-334 (1986).

    25

    25. W. Huang, B. D. Humphrey and A. G. MacDiarmid, J. Chem. Soc., Faraday Trans. 1, 82(8), 2385-2400 (1986).

    26

    26. R. Qian and J. Qiu, Polym. J., 19(1), 157-172 (1987).

    27

    27. J. Desilvestro and W. Scheifele, J. Mater. Chem., 3(3), 263-272 (1993).

    28

    28. L. J. Duić, Z. Mandić and F. Kovačiček, J. Polym. Sci. Poly. Chem., 32(1), 105-111 (1994).

    29

    29. G. Zotti, S. Cattarin and N. Comisso, J. Electroanal. Chem., 239(1-2), 387-396 (1988).

    30

    30. D. Louch, S. Motlagh and J. Pawliszyn, Anal. Chem., 64, 1187-1199 (1992).

    31

    31. J. Ai, Anal. Chem., 69(16), 3260-3266 (1997).

    32

    32. E. Rianawati and R. Balasubramanian, Phys. Chem. Earth, (Parts A/B/C), 34(13), 857-865 (2009).

    33

    33. J. M. Neff, ‘Polycyclic aromatic hydrocarbons in the aquatic environment: sources, fates, and biological effects’, Applied Science Publishers, 1979.

    34

    34. NRCC Polycyclic aromatic hydrocarbons in the aquatic environment: formation, sources, fate and effects on aquatic biota. National Research Council, Canada, 18981, 1-209 (1987).

    35

    35. CCREM Canadian Water Quality Guidelines. The Canadian Council of Resource and Environment Ministers, 1987.

    상단으로 이동

    Analytical Science and Technology